
Overview
The Setup API provides a set of functions that your setup application can call to perform installation
operations.

These setup functions work closely with Windows® 95- and Windows NT® 4.0- style INF files to provide
the following setup functionality.

For information about… See…
Queueing files File Queues
Installing files File Queues

INF Files
Creating Setup Applications

Handling errors and prompting for
media

Disk Prompting and Error
Handling

Updating registry entries INF Files
Logging installed files File Log
Storing the most recently used
source paths

MRU Source List

Unicode and ANSI versions are available for most setup functions. You can use the ANSI setup functions
to create setup applications for the Windows 95 operating system. For Windows NT setup applications,
you can use either ANSI or Unicode versions.

Note    Unicode text files should contain the standard 0XFEFF byte-order mark to enable setup
functions to identify the file as Unicode text.

Although the Setup API supports prompting for new media and basic error-handling dialog boxes, the
setup functions do not provide wizard functionality or a generic user interface.

Setup Applications
Typically, before you create a setup application, you create an INF file. An INF file is a text file that
contains information used by your setup application during an installation. For more information, see INF
Files.

After creating an INF file, you write the source code for your setup application. You can use the setup
functions in your setup application to access the information in the INF file and perform installation
operations. For more information about using the setup functions in an application, see Creating Setup
Applications.

File Version Comparisions
If the SP_COPY_NEWER flag is specified during a file copy operation, the setup functions check for an
existing copy of the file in the target directory. If an existing copy is found, the functions compare the
versions of the target and source file to determine which is newer.

The file version information used during version checks is that specified in the dwFileVersionMS and
dwFileVersionLS members of a VS_FIXEDFILEINFO structure, used by the Win32 version functions. If
one of the files does not have version resources specified or if they have the same version information,
the source file is treated as the newer file.

INF Files
Information (INF) files store information in a specific format. The setup functions retrieve information from
the INF file to use when performing installation operations.

Examples of the type of information stored in an INF file include INI and registry changes, filenames, and
locations of the source files on source media.

About INF Files
The following topics describe the new cross-platform INF file format used for Windows 95 and Windows
NT 4.0. This new format replaces the script-based INF files used with Windows NT 3.x.

Also discussed are the types of sections in the new INF files, and how they fit together to provide the
information that the setup functions use during an installation.

Introducing INF Files
Before you develop a Windows NT or Windows 95 setup application, you will probably want to create an
information (INF) file.

An INF file is made up of different types of sections. Each type of section has a particular purpose; for
example, to copy files or to add entries to the registry. Each line in a section contributes to that section's
purpose. The number and type of sections used in an INF file depends on the installation procedure.

Each section type has a particular format. The setup functions use this format to retrieve information from
the INF file. This format is described in the following topics.

To be used by the operating system installer, an INF section must contain one or more items.

In addition to the formatted INF sections, an INF file can contain private sections. You can use a private
section to store specialized information required by your setup application. The format of a private section
will depend on your application.

The Setup API includes low-level functions that you can use to retrieve information from these private
sections. Low-level setup functions, such as the SetupGetLineText and SetupGetIntField functions,
retrieve information from the INF file at the line and field level.

Additional sections types are used when installing device drivers. For more information about these other
sections, see the DDK Programmer's Guide.

INF File Format
The new INF file format contains many types of named sections. Some of these are only used when
installing device drivers and are not described in this document. For more information about these
sections, see the DDK Programmer's Guide.

When you create an INF file, you do not have to include every type of section. The sections you use will
depend on your installation procedure.

The setup functions use the following INF sections.

Add Registry Contains information used to add
subkeys or value names to the registry.

Copy Files Contains source filenames and can
specify additional copying behavior.

Delete Registry Contains information used to delete a
subkey or value name from the registry.

Delete Files Contains the filenames of files to delete,
and can specify additional deletion
behavior.

DestinationDirs Maps Copy Files sections to a
destination directory.

EventLog Install Contains information used to add an
event message to the registry.

INI File to Registry Contains information used to move lines
or sections from an INI file to the
registry.

Install Contains a list of the INF sections that
the setup functions process during the
installation.

Rename Files Contains the source and target
filenames for renaming operations.

Service Install Contains information used to install the
service listed in the AddService key of
the Services section.

Services Lists the services to add or install.
SourceDisksFiles Maps the source files to their source

location.
SourceDisksNames Assigns an ordinal value to the source

disks and can store additional
information about the source disks.

Strings Maps string keys (values in the INF file
surrounded by percent signs (%)) to
replacement strings.

Update INI Fields Contains information used to replace,
add, or delete fields in an INI entry.

Update INI File Contains information used to replace,
add, or delete an INI entry.

Version Contains information about the INF file.

The only section that must be included is the Version section. The setup functions use this section to
recognize an INF file as formatted for Windows 95 and Windows NT.

Each section title in the INF file, must be enclosed by square brackets ([]). In general, you can specify the
title for an INF section. The exceptions to this are the DestinationDirs, SourceDisksFiles,
SourceDisksNames, Strings, and Version sections. The titles of these sections must be identical to the
section type. For example:

[DestinationDirs]

The SourceDisksNames and SourceDisksFiles sections can be specified with a platform-specific suffix.
The following example shows an Intel-specific SourceDisksNames section.

[SourceDisksNames.x86]

The setup functions programmatically determine the platform of the user's system. If the setup functions
find platform-specific SourceDisksNames and SourceDisksFiles sections that match the user's
platform, the setup functions use the platform-specific sections. Otherwise the setup functions use the
default (non-suffixed) SourceDisksNames and SourceDisksFiles sections.

The formatting of lines in a section varies according with its type. For more information about the format of
a particular section, see INF File Format Reference.

INF File Sections
The different sections of an INF file fit together to provide the information used by the setup functions
during an installation. The central section that defines the steps of the installation is the Install section.

The Install section provides an overview of the installation process. Each line of an Install section has
two parts. On the left of the equals sign (=) is the key. On the right hand side, is a list of one or more
section titles. The key specifies the type of the sections that are listed on the right.

To better understand this, consider the following example of an Install section.

[MyInstallSection]
Copyfiles=DataFiles, ProgramFiles
Delfiles=OldFiles
UpdateInis=NewIniInfo
AddReg=NewRegistryInfo, MoreNewRegistryInfo
DelReg=OldRegistryInfo, MoreOldRegistryInfo

In the preceding example, the CopyFiles key is given the values DataFiles and ProgramFiles. These
specify two Copy Files sections in the INF file that contain the source filenames for the copying
operations necessary for the installation. You can specify one or more Copy Files sections for the
CopyFiles key of an Install section.

Simliarly, the Delfiles key specifies Delete Files sections that contain information relevant to file deletion
operations. The UpdateInis key specifies Update INI File sections that contain information about
updating entries in the INI file, and the AddReg and DelReg keys specify Add Registry and Delete
Registry sections that contain information about adding or deleteing registry information.

For more information about the types of sections that can be specified in an Install section, see the INF
File Format Reference.

The DestinationDirs section defines the target directory for files listed in Copy Files, Rename Files, or
Delete Files sections.

The SourceDisksNames section assigns an ordinal value to each source disk. You can store additional
information about the source disks, such as a human-readable description in this section.

The SourceDisksFiles section maps the source files to the ordinal values assigned in the
SourceDisksNames section.

You can have multiple platform-specific SourceDisksNames and SourceDisksFiles sections in an INF
file. You add a platform-specific suffix to the title of a SourceDisksNames or SourceDisksFiles section
to indicate that the information listed in that section is platform-specific.

If the setup functions find platform-specific SourceDisksNames and SourceDisksFiles sections that
match the user's platform, the setup functions use the platform-specific sections. Otherwise the setup
functions use the default (non-suffixed) SourceDisksNames and SourceDisksFiles sections.

For example, consider the following sections from an INF file.

[SourceDisksNames]
1="NT CD", \default

[SourceDisksNames.mips]
1="NT CD", \mips

[SourceDisksNames.alpha]

1="NT CD", \alpha

If the user's machine was a MIPS-based system, the setup functions use the information listed in the
section titled SourceDisksNames.mips and look for source files in the \mips directory of the specified
source media.

For an Intel-based system, no platform-specific section exists, and the setup functions use the information
listed in SourceDisksNames and look for source files in the \default directory.

The Strings section maps strings keys, values used as place-holders in an INF file and enclosed by
percent signs (%), to the printable strings they represent. You can use strings keys as placeholders in an
INF file for information that changes frequently or needs to be localized.

INF File Format Reference
The following sections describe the syntax and meaning of the items used in each type of INF file section.
INF files must follow these general rules:

· Sections begin with the section name enclosed in brackets.
· A Version section must be included in any INF file formatted for Windows 95 and Windows NT 4.0.

The Version section contains information about the INF file itself.
· Values may be expressed as replaceable strings using the form %strkey%. To use a % character in

the string, use %%. The strkey must be defined in a Strings section of the INF file.

The following INF sections can be used with the setup functions to create an installation application. For
information about INF sections used to install device drivers see the DDK Programmer's Guide.

Add Registry
Copy Files
Delete Registry
Delete Files
DestinationDirs
EventLog Install
INI File to Registry
Install
Rename Files
Service Install
Services
SourceDisksFiles
SourceDisksNames
Strings
Update INI Fields
Update INI File
Version

Add Registry       

The Add Registry section adds subkeys or value names to the registry, optionally setting the value. The
add-registry-section name must appear in an AddReg item in an Install section.

[add-registry-section]
reg-root-string, [subkey], [value-name], [flags], [value]
[reg-root-string, [subkey], [value-name], [flags], [value]]
.
.
.

reg-root-string
Registry root name. This parameter can be one of the following values.

HKCR Same as HKEY_CLASSES_ROOT.
HKCU Same as HKEY_CURRENT_USER.
HKLM Same as HKEY_LOCAL_MACHINE.
HKU Same as HKEY_USERS.
HKR Relative to the key passed into

SetupInstallFromInfSection.

subkey
Optional. Identifies the subkey to set. Has the form key1\key2\key3....

value-name
Optional. Identifies the value name for the subkey. For string type, if the value-name parameter is left
empty, the value of the subkey is set to the default value for that registry entry.

flags
Optional. Establishes the value data type and the AddReg item action. The flag value is a bitmap
where the low word contains basic flags that define the general data type and AddReg item action.
The high word contains values that more specifically identify the data type of the registry value. The
high word is ignored by the 16-bit Windows 95 setup functions in SETUPX.DLL. The flags are defined
as follows:

Value Meaning
FLG_ADDREG_BINVALUETYPE    The value is "raw" data.
FLG_ADDREG_NOCLOBBER    Do not overwrite the registry

key if it already exists.
FLG_ADDREG_DELVAL    Delete the value from the

registry.
FLG_ADDREG_APPEND    Append a value to an

existing value. This flag is
currently supported only for
REG_MULTI_SZ values.

FLG_ADDREG_TYPE_MASK    Mask.
FLG_ADDREG_TYPE_SZ    Registry data type REG_SZ.
FLG_ADDREG_TYPE_MULTI_SZ    Registry data type

REG_MULTI_SZ.
FLG_ADDREG_TYPE_EXPAND_SZ Registry data type

REG_EXPAND_SZ.
FLG_ADDREG_TYPE_BINARY    Registry data type

REG_BINARY.

FLG_ADDREG_TYPE_DWORD Registry data type
REG_DWORD.

FLG_ADDREG_TYPE_NONE    Registry data type
REG_NONE.

Bit 0 of the flag distinguishes between character and binary data as it does in the Windows 95 setup
functions, thus a Windows 95 installation program will see the extended data types as REG_SZ or
REG_BINARY. To allow REG_DWORD entries to be compatible with both operating systems, the
following formats are supported.
· Non compatible format. If compatibility with Windows 95 setup functions is not required, a

REG_DWORD entry can contain a single data value field. This value can be prefixed with a sign
and can be either decimal or hexadecimal. For example:
HKLM,"Software\Microsoft\Windows NT\CurrentVersion\
FontDPI","LogPixels",0x10001,120

· Windows 95-compatible format. If compatibility with Windows 95 setup functions is required, the
data of a FLG_ADDREG_TYPE_DWORD entry must be formatted like REG_BINARY. The
Windows NT setup functions recognize a REG_DWORD line with exactly four data elements as
compatible with Windows 95. The setup functions interpret the four data elements as one DWORD.
Hexadecimal number fields are only supported by the Windows 95 setup functions as members of
a REG_BINARY data list, in which case the data is assumed to be in hexadecimal format (the 0x
prefix must not be used). The previously listed example can be written in Windows 95-compatible
format as follows:
HKLM,"Software\Microsoft\Windows NT\CurrentVersion\FontDPI","LogPixels",
65537,78,0,0,0

To represent a number with a data type other than the predefined REG_* types, you can specify the
type number in the flag's high word and specify binary type in its low word. You must enter the data in
binary format, one byte per field. For example, to store 16 bytes of data with a new data type of 0x38,
you would have an AddReg item as follows:
HKR,,MYValue,0x00380001,0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

You can use this technique for any data type except REG_EXPAND_SZ, REG_MULTI_SZ,
REG_NONE, and REG_SZ.

value
Optional. Value to set. This parameter can be either a string or a number in hexadecimal notation. At
least two fields are required; however, one can be null. Therefore, at least one comma is required
when using this form.

The two items in the following example Add Registry section, which is named
sermouse_EventLog_AddReg, add two value names to the registry, EventMessageFile and
TypesSupported, and set the value of these names.

[sermouse_EventLog_AddReg]
HKR,,EventMessageFile,0x00020000,"%%SystemRoot%%\System32\IoLogMsg.dll;%
%SystemRoot%%\System32\drivers\sermouse.sys"
HKR,,TypesSupported,0x00010001,7

Copy Files       

A Copy Files section lists the files to copy from a source disk to a destination directory. The source disk
and destination directory associated with each file are specified in other sections of the INF file. The file-
list-section name must appear in the CopyFiles item of an Install section.

You can copy a single file with the CopyFiles item of an Install section, without building a Copy Files
section. For more information, see Install Section.

[file-list-section]
destination-file-name[,source-file-name][,temporary-file-name][,flag]
[destination-file-name[,source-file-name][,temporary-file-name]][,flag]
.
.
.

destination-file-name
Name of the destination file. If no source filename is given, this is also the name of the source file.

source-file-name
Name of the source file. If the source and destination filenames for the file copy operation are the
same, source-file-name is not required.

temporary-file-name
This value is ignored. The setup functions automatically generate names for temporary files.

flag
Optional. These flags can be used to control how files are copied. You must specify the actual
numerical value in the INF file.
COPYFLG_WARN_IF_SKIP    (0x00000001)

Display a warning if the user tries to skip a file after an error has occurred.
COPYFLG_NOSKIP    (0x00000002)

Do not allow the user to skip copying the file.
COPYFLG_NOVERSIONCHECK    (0x00000004)

Ignore file versions and write over existing files in the destination directory.
COPYFLG_FORCE_FILE_IN_USE    (0x00000008)

Force file-in-use behavior.    Handle the file as if it was in use during the file copying operation.
COPYFLG_NO_OVERWRITE    (0x00000010)

Do not overwrite an existing file in the destination directory.
COPYFLG_NO_VERSION_DIALOG    (0x00000020)

Do not overwrite a file in the destination directory if the existing file is newer than the source file.
COPYFLG_REPLACEONLY    (0x00000040)

Copy the source file to the destination directory only if the file is already present in the destination
directory.

The following example copies two files:

[CopyTheseFilesSec]
file11 ; copies file11
file31, file32 ; copies file32 to file31

All the source filenames used in this example must be defined in a SourceDisksFiles section and the
Directory identifiers that appear in the SourceDisksFiles section must be defined in a
SourceDisksNames section. As an alternative, you can use a layout INF file specified in the Version
section to supply this information.    A layout INF file is a file that contains a SourceDisksFiles section and

a SourceDisksNames section.   

Delete Registry       

A Delete Registry section deletes a subkey or value name from the registry. The del-registry-section
name must appear in a DelReg item in an Install section.

A Delete Registry section can contain any number of items. Each item deletes one subkey or value
name from the registry.

[del-registry-section]
reg-root-string, subkey, [value-name]
[reg-root-string, subkey, [value-name]]
.
.
.

reg-root-string
Registry root name. This parameter can be one of the following values:

HKCR Same as HKEY_CLASSES_ROOT.
HKCU        Same as HKEY_CURRENT_USER.
HKLM        Same as HKEY_LOCAL_MACHINE.
HKU            Same as HKEY_USERS.
HKR            Relative from the key passed into

SetupInstallFromInfSection.

subkey
Identifies the subkey to delete. Has the form key1\key2\key3... This parameter can be expressed as a
replaceable string. For example, you could use %Subkey1% where the string to replace %Subkey1%
is defined in the Strings section of the INF file.

value-name
Optional. Identifies the value name for the subkey. The value-name parameter can be expressed as a
replaceable string. For example, you could use %Valname1% where the string to replace
%Valname1% is defined in the Strings section of the INF file.

Delete Files       

A Delete Files section lists the files to be deleted. The file-list-section name must appear in the Delfiles
item of an Install section.

[file-list-section]
file-name[,,,flag]
.
.
.

file-name
Identifies a file to be deleted. File-name must be defined in a SourceDisksFiles section.

flag
Optional. These flags can be used to control how files are copied. You must specify the actual
numerical value in the INF file.
DELFLG_IN_USE    (0x00000001)

If the file is in use when SetupCommitFileQueue is called, queue the file to be deleted when the
system is rebooted.

Note    If you do not use this flag along with a file-name parameter and the file is in use when the
Delete Files section is executed, the file will not be deleted from the system.

DELFLG_IN_USE1    (0x00010000)
This flag is a high-word version of the DELFLG_IN_USE. Setting DELFLG_IN_USE1 causes the
same behavior as setting DELFLG_IN_USE with the difference that it enables you to use the same
section as both a Copy Files and Delete Files section without causing conflicts if the
COPYFLG_WARN_IF_SKIP flag is used.

The following example deletes three files:

[DeleteOldFilesSec]
file1
file2
file3

DestinationDirs       

The DestinationDirs section defines the destination directories for the operations specified in file-list
sections (Copy Files, Rename Files, or Delete Files). As an option, you can specify a default destination
directory for any Copy Files, Rename Files, or Delete Files sections in the INF file that are not explicitly
named in the DestinationDirs section.

[DestinationDirs]
file-list-section=drid[,subdir]
.
.
.
[DefaultDestDir=drid[,subdir]]

file-list-section
Name of a Copy Files, Rename Files, or Delete Files section. Typically, you will refer to this section
in the CopyFiles, RenFiles, or DelFiles line of an Install section.

drid
A directory identifier (DRID). The installer replaces a DIRID with an actual name during installation.
A DIRID has the form %dirid% where dirid is one of the predefined identifiers or an identifier defined
in the DestinationDirs section. When using a DIRID, you should use the backslash in a path. For
example, %11%\card.ini can be used to reference card.ini in the system32 directory.
A DIRID can be one of the following values:

-01,
0xffff

The directory from which the INF was installed.

01 SourceDrive:\path.
10 Windows directory.
11 System directory. (%windir%\system on Windows 95,

%windir%\system32 on Windows NT)
12 Drivers directory.(%windir%\system32\drivers on Windows

NT)
17 INF file directory.
18 Help directory.
20 Fonts directory.
21 Viewers directory.
24 Applications directory.
25 Shared directory.
30 Root directory of the boot drive.
50 %windir%\system
51 Spool directory.
52 Spool drivers directory.
53 User Profile directory.
54 Path to ntldr or OSLOADER.EXE

subdir
Name of the directory, within the directory named by drid, to be the destination directory.

The optional DefaultDestDir item provides a default destination for any CopyFiles items that use the
direct copy (@filename) notation or any Copy Files, Rename Files, or Delete Files sections not

specified in the DestinationDirs section. If a DefaultDestDir is not used in a DestinationDirs section,
the default directory is set to drid_system.

This example sets the default directory for all the sections of the INF file to the drivers directory:

[DestinationDirs]
DefaultDestDir = 12 ; DIRID_DRIVERS

EventLog Install       

The EventLog Install section adds an event message file to the registry. You can also use an EventLog
Install section to remove an event message file.

[install-section-name_EventLogInstallSection]
AddReg=add-registry-section
DelReg=del-registry-section

add-registry-section
The section of the INF file that specifies subkeys to add to the registry to install the event message
file.

del-registry-section
The section of the INF file that specifies subkeys to delete from the registry to remove the event
message file.

The following is an example of a typical EventLog Install section:

[sermouse_EventLog_Inst]
AddReg=sermouse_EventLog_AddReg

[sermouse_EventLog_AddReg]
HKR,EventMessageFile,0x00020000,"%%SystemRoot%%\System32\IoLogMsg.dll\;%
%SystemRoot%%\System32\drivers\sermouse.sys"
HKR,,TypesSupported,0x00010001,7

INI File to Registry       

The INI File to Registry section moves lines or sections from an INI file to the registry, creating or
replacing a registry entry under the specified key in the registry. The section name ini-to-registry-section
must appear in an Ini2Reg item in an Install section of the INF file.

[ini-to-registry-section]
ini-file, ini-section, [ini-key],reg-root-string,subkey[,flags]
.
.
.

ini-file
Name of the INI file containing the key to copy. For more information about specifying the INI
filename, see the Update Ini File section.

ini-section
Name of the section in the INI file containing the key to copy.

ini-key
Name of the key in the INI file to copy to the registry. If ini-key is empty, the whole section is
transferred to the specified registry key.

reg-root-string
Registry root name. This parameter can be one of the following values:

HKCR Same as HKEY_CLASSES_ROOT.
HKCU Same as HKEY_CURRENT_USER.
HKLM Same as HKEY_LOCAL_MACHINE.
HKU Same as HKEY_USERS.
HKR Relative from the key passed into

SetupInstallFromInfSection.

subkey
Identifies the subkey to receive the value. Has the form key1\key2\key3...

flags
Indicates whether to delete the INI key after transfer to the registry and whether to overwrite the value
in the registry if the registry key already exists. This parameter can be one of the following values.

Bit Value Meaning
0 0 (Default) Do not delete the INI entry from

the INI file after moving the information in
the entry to the registry.

0 1 Delete the INI entry from the INI file after
moving the information in the entry to the
registry.

1 0 (Default) If the registry subkey exists, do
not replace its current value.

1 1 If the registry subkey exists, replace its
current value with the value from the INI
file entry.

Install       

The Install section identifies the sections in the INF file that contain instructions for installing files.

[install-section-name]
LogConfig=log-config-section-name[,log-config-section-name]...
Copyfiles=file-list-section[,file-list-section]...
Renfiles=file-list-section[,file-list-section]...
Delfiles=file-list-section[,file-list-section]...
UpdateInis=update-ini-section[,update-ini-section]...
UpdateIniFields=update-inifields-section[,update-inifields-section]...
AddReg=add-registry-section[,add-registry-section]...
DelReg=del-registry-section[,del-registry-section]...
Ini2Reg=ini-to-registry-section[,ini-to-registry-section]...

Not all the types of items shown in the syntax are needed or required in an Install section. Section names
must consist of printable characters. An item can contain more than one section ; each name after the first
must be preceded with a comma. Items must specify the name of the corresponding section in the INF
file. The only exception to this is the CopyFiles item, which need not specify a section if only one file is to
be copied.

Note    You only use Log Config sections when installing a device driver. For more information, see
the DDK Programmer's Guide.

You can use a special notation in the CopyFiles item to copy a single file directly from the CopyFiles line.
You can copy individual by prefixing the filename with an @ symbol. The destination for any file copied
using this notation is the DefaultDestDir item, as defined in a DestinationDirs section. This is
demonstrated in the following example.

[MyInstall]
CopyFiles=@MyFile.exe

By appending an extension to the name of the Install section, you can have different Install sections for
different operating systems or platforms, if necessary. The Setup routines recognize the following
extensions:

.Win Windows 95

.NT Windows NT (all platforms)

.NTx86 Windows NT (x86 only)

.NTMIPS Windows NT (MIPS only)

.NTAlpha Windows NT (Alpha only)

.NTPPC Windows NT (PPC only)

The following example Install section consists of a single line that lists two Copy Files sections:

[Ser_Inst]
CopyFiles=Ser_CopyFiles, mouclass_CopyFiles

[Ser_CopyFiles]
sermouse.sys

[mouclass_CopyFiles]
mouclass.sys

Rename Files       

A Rename Files section lists the names of files to be renamed. The name of the section must appear in a
Renfiles item in an Install section of the INF file.

[rename-files-section-name]
new-file-name,old-file-name
.
.
.

new-file-name
New name of the file.

old-file-name
Old name of the file. The old-file-name parameter must be defined in a SourceDisksFiles section.

The following example renames file42 to file41, file52 to file51, and file62 to file61:

[RenameOldFilesSec]
file41, file42
file51, file52
file61, file62

Service Install       

The Service Install section installs the service listed in the AddService entry of the Services section:

[install-section-name_ServiceInstallSection]
DisplayName=[name]
ServiceType=type-code
StartType=start-code
ErrorControl=error-control-level
ServiceBinary=path-to-service
LoadOrderGroup=[load-order-group-name]
Dependencies=+depend-on-group-name[[,depend-on-service-name]...]
StartName=[driver-object-name]

name
Optional. A friendly name for the service.

type-code
Specifies the type of driver. This can be any type allowed by the CreateService function.

start-code
Specifies when to start the driver. This parameter can be one of the following values:
SERVICE_BOOT_START (0x0)

Indicates a driver started by the operating system loader. Use this code only for drivers essential to
loading the operating system.

SERVICE_SYSTEM_START (0x1)
Indicates a driver started during system initialization.

SERVICE_AUTO_START (0x2)
Indicates a driver started by the Service Control Manager during system startup.

SERVICE_DEMAND_START (0x3)
Indicates a driver that the Service Control Manager starts on demand.

SERVICE_DISABLED (0x4)
Indicates a driver that cannot be started.

error-control-level
Specifies the level of error control. This parameter can be one of the following values:
CRITICAL (0x3)

If the driver fails to load, fail the attempted startup. If the startup is not using the LastKnownGood
control set, switch to LastKnownGood. If the startup attempt is using LastKnownGood, run a bug-
check routine.

SEVERE (0x2)
If the startup is not using the LastKnownGood control set, switch to LastKnownGood. If the startup
attempt is using LastKnownGood, continue on in case of error.

NORMAL (0x1)
If the driver fails to load or initialize, startup should proceed, but display a warning.

IGNORE (0x0)
If the driver fails to load or intialize, startup proceeds. No warning is displayed.

path
The path to the binary for the service.

load-order-group-name
Optional. Identifies the load order group of which this driver is a member. Examples of groups are:
pointer, port, primary disk, and so forth.

+depend-on-group-name

Optional. Specifies a load order group on which the driver depends. The driver is started only if at
least one member of the specified group has been started.

depend-on-service-name
Optional. Specifies a service that must be running before this driver is started.

driver-object-name
Optional. If type-code specifies a Kernel driver or a file system driver, this name is the Windows NT
driver object name that the I/O Manager uses to load the device driver.

The following example shows a typical Service Install section:

[mouclass_Service_Inst]
DisplayName = %mouclass.SvcDesc%
ServiceType = 1 ; SERVICE_KERNEL_DRIVER
StartType = 1 ; SERVICE_SYSTEM_START
ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ServiceBinary = %12%\mouclass.sys
LoadOrderGroup = Pointer Class

Services       

The Services section lists services to add to a computer. You can remove services by including a
DelService entry in the Services section.

[install-section-name.Services]
AddService=ServiceName,flag,service-install-section[,event-log-install-
section]
DelService=ServiceName

ServiceName
The service to install or delete.

flag
Specifies how to add the service. This parameter is only used with the AddService key and can be
one of the following flags.
SPSVCINST_TAGTOFRONT (0x1)

Move the service's tag to the front of its group order list.
SPSVCINST_ASSOCSERVICE (0x2)

Associate the service in this AddService item with the device to be installed by this INF file.
service-install-section

The name of the Service Install section.
event-log-install-section

The name of the EventLog Install section.

The following example shows a typical Services section:

[Ser_Inst.Services]
AddService = sermouse, 0x00000002, sermouse_Service_Inst,
sermouse_EventLog_Inst ; Port Driver
AddService = mouclass,, mouclass_Service_Inst, mouclass_EventLog_Inst
 ; Class Driver

SourceDisksFiles       

The SourceDisksFiles section names the source files used during installation and identifies the source
disks that contain the files. The source disks are listed in SourceDisksNames.

In order to allow multi-platform distribution of source files, you can construct a platform-specific
SourceDisksFiles section. For example, on a MIPS platform, all setup functions that use a
SourceDisksFiles section will first look for a SourceDisksFiles.Mips section. If the setup functions do
not find a SourceDisksFiles.Mips section, or the specified line is not found in that section, the setup
functions will use the SourceDisksFiles section. This behavior affects any setup function that directly or
indirectly references a SourceDisksFiles section as part of its processing.

The suffixes are not case sensitive and can be one of the following.

· alpha
· mips
· ppc
· x86

[SourceDisksFiles]
filename=disk-number[,subdir][,size]
.
.
.

filename
Name of the file on the source disk.

disk-number
Ordinal of the source disk that contains the file. This ordinal must be defined in a
SourceDisksNames section, and must have a value greater than or equal to 1.

subdir
Optional parameter that specifies the subdirectory on the source disk where the file resides. If this
parameter is not used, the source disk root directory is the default.

size
Optional parameter that specifies the uncompressed size of the file.

The following example SourceDisksFiles section identifies a single source file, SRS01.x86, on the disk
with the ordinal of 1.

[SourceDisksFiles]
SRS01.x86 = 1

SourceDisksNames       

The SourceDisksNames section identifies and names the disk that contains the source files for file
copying and renaming operations. The source files are listed in SourceDisksFiles.

In order to allow multi-platform distribution of source files, you can construct a platform-specific
SourceDisksNames section. For example, on a MIPS platform, all setup functions that use a
SourceDisksNames section will first look for a SourceDisksNames.Mips section. If the setup functions
do not find a SourceDisksNames.Mips section, or the specified line is not found in that section, the
setup functions will use the SourceDisksFiles section. This behavior affects any setup function that
directly or indirectly references a SourceDisksFiles section as part of its processing.

The suffixes are not case sensitive and can be one of the following.

· alpha
· mips
· ppc
· x86

[SourceDisksNames]
disk-ordinal="disk-description",disk-label,unused[,path]
.
.
.

disk-ordinal
A unique number that identifies a source disk. If there is more than one source disk, each must have
a unique ordinal.

disk-description
A string or strings key describing the content or purpose of the disk. The installer displays this string
to the user to identify the disk. The description must be enclosed in double quotation marks.

disk-label
The volume label of the source disk that is set when the source disk is formatted.

unused
This parameter is not used.

path
Optional parameter that specifies the absolute path to the source files. If this parameter is not used,
the root directory is the default.

In the following example, the write.exe file is the same for all platforms and is located in the \common
directory on the compact disc. The disk-number of 1 directs the setup functions to the \common directory,
regardless of which platform the files are being installed on. The CMD.EXE file is a platform-specific file
that is distributed for all platforms. The disk-number of 2 directs the setup functions to the correct directory
for each platform. The HALNECMP.DLL file is specific to the MIPS platform.

[SourceDisksNames]
1 = "Windows NT CD-ROM", Instd1,, \common

[SourceDisksNames.Alpha]
2 = "Windows NT CD-ROM", Instd1,, \alpha

[SourceDisksNames.Mips]
2 = "Windows NT CD-ROM", Instd1,, \mips

[SourceDisksNames.x86]
2 = "Windows NT CD-ROM", Instd1,, \x86

[SourceDisksNames.ppc]
2 = "Windows NT CD-ROM", Instd1,, \ppc

[SourceDisksFiles]
write.exe = 1
cmd.exe = 2

[SourceDisksFiles.Mips]
halnecmp.dll = 2

Strings       

The Strings section defines one or more strings keys. A strings key is a name that represents a string of
printable characters. Although the Strings section is usually the last section in an INF file, a strings key
defined in a Strings section can be used anywhere in the INF file that uses the string. The installer
expands the string key to the specified string and uses it for further processing. When a strings key is
used, it must be enclosed by percent signs (%). To use a % character in the string, use %%.

[Strings]
strings-key=value
.
.
.

strings-key
A unique name consisting of letters and digits.

value
A string consisting of letters, digits, or other printable characters. It should be enclosed in double
quotation marks if the corresponding strings key is used in a type of item that requires double
quotation marks.

The Strings section simplifies translation of strings for international markets by placing all strings that can
be displayed at the user interface in a single section of the INF file. Strings keys should be used
whenever possible. The following example shows the Strings section of a typical INF file.

[Strings]
String0="Corporation X"
String1="Corporation X"
String2="CS2590 SCSI Adapter"

Update INI Fields       

The Update INI Fields section replaces, adds, and deletes fields in the value of an INI entry. Unlike an
Update INI File section, an Update INI Fields section replaces, adds, or deletes portions of a value in an
INI file entry rather than the whole value. The section name, update-inifields-section-name, must appear
in the UpdateIniFields item in an Install section of the INF file.

[update-inifields-section-name]
ini-file,ini-section,profile-name,[old-field],[new-field],[flags]
.
.
.

ini-file
Name of the INI file containing the entry to change. For more information about specifying the INI
filename, see Update INI File Section.

ini-section
Name of the INI file section containing the entry to change.

profile-name
Name of the entry to change.

old-field
Field value to delete.

new-field
Field value to add, if it does not exist.

flags
Specifies whether to treat the old-field and new-field arguments as though they have a wild card
character. The parameter specifies which separator character to use when appending a new field to
an INI file entry. The flags argument can be any of the following values.

Bit Value Meaning
0 0 (Default) Treat the asterisk (*) character

literally and not as a wild card character
when matching fields .

0 1 Treat the asterisk (*) character as a wild
card character when matching fields.

1 0 (Default) Use a blank () as a separator
when adding a new field to an entry.

1 1 Use a comma (,) as a separator when
adding a new field to an entry.

The setup functions remove any comments in the INI file line because they might not be applicable after
changes. When looking for fields in the line in the INI file, the setup functions search for spaces, tabs, and
commas as field delimiters. However, a space is used as the separator when the new field is appended to
the line.

Update INI File       

The Update INI File section replaces, deletes, or adds complete entries in the INI file. The section name,
update-ini-section-name, must appear in the UpdateInis item in the Install section of the INF file.

[update-ini-section-name]
ini-file,ini-section,[old-ini-entry],[new-ini-entry],[flags]
.
.
.

ini-file
The INI file containing the entry to change.

ini-section
Name of the section containing the entry to change.

old-ini-entry
Optional. Usually in the form key=value.

new-ini-entry
Optional. Usually in the form key=value. Either the key or value may specify replaceable strings. For
example, either the key or value specified in the new-ini-entry parameter may be %String1%, where
the string that replaces %String1% is defined in the Strings section of the INF file.

flags
Optional action flags. The flags parameter can be one of the following values:

Value Meaning
0 Default. If old-ini-entry key is present in an INI file entry,

that entry is replaced with new-ini-entry. Only the keys of
the old-ini-entry parameter and the INF file entry must
match; the value of each entry is ignored.
To add new-ini-entry to the INI file unconditionally, set old-
ini-entry to NULL. To delete old-ini-entry from the INI file
unconditionally, set new-ini-entry to NULL.

1 If both key and value of old-ini-entry exist in an INI file
entry, that entry is replaced with new-ini-entry. The old-ini-
entry parameter and the INF file entry must match on
both key and value for the replacement to be made (this
is in contrast to using an action flag value of 0, where
only the keys must match for the replacement to be
made).

2 If the key in the old-ini-entry parameter does not exist in
the INI file, no operation is performed on the INI file.
If the key in the old-ini-entry parameter exists in an INI file
entry and the key in the new-ini-entry parameter exists in
an INI file entry, the INI file entry that matches the key in
the new-ini-entry parameter is deleted, and the key of the
INI file entry that matches the old-ini-entry parameter is
replaced with the key in the new-ini-entry parameter.
If the key in the old-ini-entry parameter exists in an INI file
entry and the key in the new-ini-entry parameter does not
exist in an INI file entry, an entry made up of the key in
the new-ini-entry parameter and the old value is added to
the INI file.

The match of the old-ini-entry parameter and an INI file
entry is based on key alone, not key and value.

3 Same as the flags parameter value of 2 described
preceding, except the match of the old-ini-entry
parameter and an entry in the INF file is based on
matching both key and value, not just the key.

You can use the wild card character (*) in specifying the key and value and they will be interpreted
correctly.

The ini-filename can be a string or a strings key. A strings key has the form %strkey% where strkey is
defined in the Strings section in the INF file. The name must be a valid filename.

The ini-filename should include the name of the directory containing the file, but the directory name
should be given as a directory identifier rather than an actual name. The installer replaces a directory
identifier with an actual name during installation.

A directory identifier has the form %dirid% where dirid is one of the predefined identifiers or an identifier
set by SetupSetDirectoryId. When using a directory identifier, you should use the backslash in a path.
For example, you can use %11%\card.ini to reference CARD.INI in the System32 directory.

The following examples illustrate individual items in an Update INI File section:

%11%\sample.ini, Section1,, Value1=2 ; adds new entry
%11%\sample.ini, Section2, Value3=*, ; deletes old entry
%11%\sample.ini, Section4, Value5=1, Value5=4 ; replaces old entry

Version       

The Version section must be included in all INF files formatted for use with Windows 95 and Windows NT
4.0.

[Version]
Signature="signature-name"
Class=class-name
ClassGUID=GUID
Provider=INF-creator
LayoutFile=filename.inf[,filename.inf]...

signature-name
This parameter can be either $Windows NT$, $Chicago$, or $Windows 95$. If signature-name is not
one of these strings, the file is not accepted as an INF file for the classes of devices recognized by
Windows NT. Signature string recognition is case-insensitive.

class-name
This parameter is only used when installing device drivers. For more information see the DDK
Programmer's Guide.

GUID
This parameter is only used when installing device drivers. For more information see the DDK
Programmer's Guide.

INF-creator
Identifies the creator of the INF file. Typically, this is the name of the organization that creates the INF
file.

filename.inf
The INF file that contains the SourceDisksFiles and SourceDisksNames sections required for
installing this the application. This file is usually named LAYOUT.INF. If filename.inf is not specified,
the SourceDisksNames and SourceDisksFiles sections must be included in the current INF file.

The following example shows a typical Version section:

[Version]
Signature="$Windows NT$"
Class=Mouse
ClassGUID={4D36E96F-E325-11CE-BFC1-08002BE10318}
Provider=%Provider%
LayoutFile=layout.inf

[Strings]
Provider="Corporation X"

Using INF Files
After you create an INF file for the installation process, the setup functions can access that information to
use when copying, deleting, or renaming files and updating INIs and registry entries.

The following topics describe how to use the setup functions to retrieve information from INF files and
how to perform installation operations by referencing an INF file.

Opening and Closing an INF file
Before the setup functions can access information in the INF, you must open it with a call to the
SetupOpenInfFile function. This function returns a handle to the INF file.

If you do not know the name of the INF file that you need to open, you can use the SetupGetInfFileList
function to obtain a list of all the INF files of a particular type (either old Windows NT 3.x script-based files,
or new Windows 95- and Windows NT 4.0-style INF files, or both) in a directory.

After you open an INF file, you can append additional INF files to the opened INF file by using the
SetupOpenAppendInfFile function. This is functionally similar to an include statement. When
subsequent setup functions reference an open INF file, they will also be able to access any information
stored in the appended files.

If you do not specify an INF file during the call to the SetupOpenAppendInfFile function,
SetupOpenAppendInfFile appends the file(s) specified by the LayoutFile key in the Version section of
the open INF file.

When you no longer need the information in the INF file, call the SetupCloseInfFile functionto release
resources allocated during the call to SetupOpenInfFile.

Retrieving Information From an INF File
After you have a handle to an INF file, you can retrieve information from it in a variety of ways. Functions
such as SetupGetInfInformation, SetupQueryInfFileInformation, and
SetupQueryInfVersionInformation retrieve information about the INF file itself.

Other functions such as SetupGetSourceInfo and SetupGetTargetPath acquire information about the
source files and target directories.

Low-level functions like SetupGetLineText and SetupGetStringField enable you to directly access
information stored in a line or field of an INF file. These functions are used internally by the higher-level
functions, but are also available should you need to access INF information at the line or field level.

Installing From an INF File
After you retrieve installation information from an INF file, there are several file-handling functions that you
can use to install the files listed in an INF section. Low-level functions such as SetupInstallFile and
SetupInstallFileEx install a single file.

There are also functions to handle compressed files. The SetupGetFileCompressionInfo function
returns information about compressed files. This information can then be used by
SetupDecompressOrCopyFile to copy and, if necessary, expand the file.

High-level functions such as SetupInstallFromInfSection, SetupInstallFilesFromInfSection, and
SetupInstallServicesFromInfSection process the installation operations in an INF section. Of these,
SetupInstallFromInfSection is the most versatile because it can perform any type of installation
operation listed in the Install section of an INF file. This includes the registry and INI operations listed in
the AddReg, DelReg, UpdateInis, or UpdateIniField lines of an Install section.

The SetupInstallFilesFromInfSection and SetupInstallServicesFromInfSection functions queue
operations from an INF section to an existing file queue. For more information, see File Queues.

In contrast, the SetupInstallFromInfSection function creates and destroys its own internal queue. A
common use for SetupInstallFromInfSection is to call it after all files have been successfully copied to
perform the registry and INI transactions.

In addition to the functions previously listed, the Setup API includes functions that queue file installation
operations, either by file, or by INF section. For more information, see File Queues.

INF File Reference
The following topics list the data types, structures, functions and notifications used with INF files.

INF File Data Types
The following data type is used with INF files.

HINF Handle to a loaded INF file.

INF File Structures
The following structures are used with INF files.

INFCONTEXT Positional context in an INF file.
SP_INF_INFORMATION Information about the INF file

Note    The structure INFCONTEXT is used internally by the setup functions and must not be altered
or referenced by setup applications. It is included here for informational purposes only.

INF File Functions
The following functions are used with INF files.

SetupCloseInfFile Frees resources and closes
the INF handle.

SetupDecompressOrCopyFile Copies a file and, if necessary,
decompresses it.

SetupFindFirstLine Finds a the first line in a
section of an INF file or, if a
key is specified, the first line
that matches that key. It
updates the Line member of
an INFCONTEXT structure.

SetupFindNextLine Returns the next line in a
section relative to the Line
member of the specified
INFCONTEXT structure.

SetupFindNextMatchLine Returns the next line in a
section relative to the Line
member of the specified
INFCONTEXT that matches a
specified key.

SetupGetBinaryField Retrieves data from a line
whose fields are in binary
format.

SetupGetFieldCount Returns the number of fields in
a line.

SetupGetFileCompressionInfo Retrieves file compression
information from an INF file.

SetupGetInfFileList Gets a list of the types of INF
files in a specified directory.

SetupGetInfInformation Returns information about an
INF file (by Line member of an
INFCONTEXT or filename).

SetupGetIntField Returns the specified integer
field of a line in an INF file.

SetupGetLineByIndex Updates the Line member of
an INFCONTEXT for the line
at a specified index in the
specified section.

SetupGetLineCount Returns the number of lines in
the specified section.

SetupGetLineText Retrieves the content of a
specified line from an INF file.

SetupGetMultiSzField Returns a list of strings,
starting at the specified field of
a line in an INF file.

SetupGetSourceFileLocation Gets the source disk ordinal
and path (relative to source
root) where the source file is
located

SetupGetSourceFileSize Gets the file size for an
individual source file or a
Copy Files section of an INF
file.

SetupGetSourceInfo Retrieves the path, tag file, or
description for a source.

SetupGetStringField Returns the specified string
field of a line in an INF file.

SetupGetTargetPath Gets the target path for a
Copy Files section in an INF
file.

SetupInstallFile Installs a file.
SetupInstallFileEx Installs a file and returns a

variable indicating whether or
not the file was in use.

SetupInstallFilesFromInfSection Queues all the files in an INF
file Copy Files section.

SetupInstallFromInfSection Performs the directives
specified in an INF file Install
section.

SetupInstallServicesFromInfSectio
n

Performs service installation
and deletion operations as
specified in a Service Install
section of an INF file.

SetupOpenAppendInfFile Opens an INF file and append
it to an existing INF handle.

SetupOpenInfFile Opens an INF file and returns
a handle to it.

SetupOpenMasterInf Windows NT only: Opens the
INF file that contains file and
layout information for files
shipped with Windows NT.

SetupQueryInfFileInformation Queries an INF information
structure about its associated
INF filename(s).

SetupQueryInfVersionInformation Queries an INF information
structure for version
information on one of its
constituent INF files.

SetupSetDirectoryId Associates a new directory
identifier with a particular
directory.

INF File Notifications
The following notifications are used with the SetupInstallFile, SetupInstallFileEx, and
SetupInstallFromInfSection functions. For more information about the format and use of notifications,
see Notifications.

SPFILENOTIFY_FILEOPDELAYED The file is in use, and the current
operation is delayed until the
system is rebooted.

SPFILENOTIFY_LANGMISMATCH The language of the current file
does not match the system
language.

SPFILENOTIFY_TARGETEXISTS A copy of the specified file
already exists on the target.

SPFILENOTIFY_TARGETNEWER A newer version of the specified
file exists on the target.

Note    Because SetupInstallFromInfSection creates and commits an internal file queue, it also
uses the File Queue Notifications.

Disk Prompting and Error Handling
There are four setup functions that provide basic functionality to prompt the user for a new source disk, or
to create error dialog boxes. The following sections describe these dialog boxes and how to use them in
setup applications and in callback routines.

About Disk Prompting and Error Handling
Though the setup functions do not provide a user interface, there are four setup functions that generate
dialog boxes to handle common installation situations and gather information from the user. These are:
SetupPromptForDisk, SetupCopyError, SetupRenameError, and SetupDeleteError.

Callback routines can call these functions to create dialog boxes to aid in processing notifications sent by
other setup functions such as SetupCommitFileQueue and SetupInstallFile.

The SetupPromptForDisk function prompts the user to insert removable media, specify a new source
path, or cancel the installation. The application can offer additional options to the user, depending on the
flags specified when the function is called. These include skipping the current file, or browsing for a new
source path.

The three functions, SetupCopyError, SetupRenameError, and SetupDeleteError, create dialog boxes
that interact with the user to gather information from the user on how to proceed when an error has
occurred.

The SetupCopyError function generates a dialog box that asks the user how to recover from a copy
error. The user can specify a new source path for the copy operation or cancel the installation. Depending
on the flags specified during the call to SetupCopyError, the user may also be able to browse for a new
source path, view error details, or skip the current file.

A dialog box that asks the user how to process errors that occur during a file renaming operation can be
generated by calling SetupRenameError. With this dialog box, the user has the opportunity to retry the
operation, skip the current rename operation, or abort.

The SetupDeleteError function generates a dialog box that can gather input on how the user wishes to
handle an error that occurred during a file deletion operation. The user is given the options to retry the
operation, skip the current delete operation, or abort.

The default queue callback routine, SetupDefaultQueueCallback, uses the previously mentioned four
functions to generate parts of its user interface and to handle errors and prompt for new media.

Using Disk Prompting and Error Handling
The dialog boxes created by the setup functions, SetupPromptForDisk, SetupCopyError,
SetupDeleteError, and SetupRenameError can be used by a setup application, or by callback routines.
The following sections describe using the functions in an application, and their corresponding
notifications.

Prompting For a Disk
To generate a dialog box that prompts the user to insert the next disk or specify a new source path, call
SetupPromptForDisk. This function is used by callback routines to generate a user interface when the
notification, SPFILENOTIFY_NEEDMEDIA, is sent to the callback routine.

The dialog box generated by SetupPromptForDisk gives the user the option to insert a disk, specify a
new source path, or cancel the installation.

You can use flags specified during the call to SetupPromptForDisk to alter the layout and behavior of the
dialog box. Using these flags, you can control whether the dialog box includes buttons that allow the user
to browse for a new source path, or skip the current file. The flags also enable you to control dialog box
behavior such as beeping when first displayed, and the ability be displayed as a foreground window.

Error Handling
There are three functions that generate dialog boxes to handle errors: SetupCopyError,
SetupDeleteError, and SetupRenameError.

Callback routines can use these functions to generate a user interface to handle
SPFILENOTIFY_COPYERROR, SPFILENOTIFY_DELETEERROR, and
SPFILENOTIFY_RENAMEERROR notifications.

Each of these error-handling functions generates a dialog box that asks the user for information on how to
proceed. As with SetupPromptForDisk, you can modify the dialog box's layout and behavior by
specifying flags during the function call.

Disk Prompting and Error Handling Reference
The following sections list the functions that create dialog boxes for basic disk prompting and error
handling.

Disk Prompting and Error Handling Functions
The following functions provide disk prompting and an error handling user interface.

SetupCopyError Generates a dialog box that
informs the user of a copy error.

SetupDeleteError Generates a dialog box that
informs the user of a deletion
error.

SetupPromptForDisk Generates a dialog box that
prompts the user for a media disk
or source file location.

SetupRenameError Generates a dialog box that
informs the user of a rename
error.

File Queues
The setup functions include file queue functionality. A file queue is a list of file copying, renaming, and
deletion operations. These operations can be sent to the queue in any order. When the queue is
committed, these operations are processed as a batch, in order of the operation type.

The following sections explain what a queue is and how to use it when creating a setup application. Also
discussed is the order in which the enqueued file operations are processed as the queue commits and
what notifications the queue sends to a callback routine at each stage.

About File Queues
A file queue is a list of file operations that are processed at one time. The file operations in the queue may
be copy, rename, or delete operations. The file queue organizes file operations by type, creating copy,
rename, and delete subqueues.

These operations may be sent to the queue in any order, and the enqueueing process need not be
contiguous.    When the queue is committed, the SetupCommitFileQueue function performs file
operations in order of the operation type.

Typically, all of the file operations necessary for an entire installation are queued to the file queue, and
then processed in a single batch when the queue is committed.

One advantage of queueing file operations over installing files section-by-section from an INF file is that
you can streamline the installation process. Instead of having to obtain information from the user for each
section to be installed, you can obtain installation information from the user for all the files to be installed
while building the queue. This frees the user to pursue other activities while the time-intensive copy
operations are processed by the SetupCommitFileQueue function.

Another advantage of file queues is that you can track the progress of the installation as a whole. When
installing section-by-section from an INF file, progress indicators such as progress bars can track only the
current INF section. When the next section is installed, the progress bar starts over. With a queue, the
total number of files to be processed during the entire installation is known before the queue is committed,
and thus, a progress bar can be generated to track the entire installation.

Order of Queue Commitment
When the SetupCommitFileQueue function commits the file queue, it processes the file operations in the
following order: file deletion operations, then file renaming operations, and finally, file copying operations.
The following figure illustrates the life cycle of a queue's commitment process.

start the queue
 start the delete subqueue
 start a file delete operation < - - repeat for each
 finish a file delete operation < - - queued file delete
 finish the delete subqueue

 start the rename subqueue
 start a file rename operation < - - repeat for each
 finish a file rename operation < - - queued file rename
 finish the rename subqueue

 start the copy subqueue
 start a file copy operation < - - repeat for each
 finish a file copy operation < - - queued file copy
 finish the copy subqueue
finish the queue

At each step, or if an error occurs, the SetupCommitFileQueue function sends a notification to the
callback routine. The callback routine can use the information sent by the queue to track the installation
progress and, if necessary, interact with the user.

For example, if a file copy operation needed a source file that was not available at the current path,
SetupCommitFileQueue would send a SPFILENOTIFY_NEEDMEDIA notification to the callback routine,
along with information about the file and media required. The callback routine could use this information
to generate a dialog box that prompts the user to insert the next disk by calling SetupPromptForDisk

A default queue callback routine, SetupDefaultQueueCallback, is included with the Setup API. This
routine handles queue notifications and generates error dialog boxes and progress bars for the
installation. You can use the default queue callback routine as it is, or write a filter callback routine to
handle a subset of the notifications and pass the others on to the default queue callback routine.

If none of the functionality of the callback routine suits your needs, you can write a self-contained custom
callback routine that does not call the default queue callback routine.

For more information about queue callback routines, see Default Queue Callback Routine, and Creating a
Custom Queue Callback Routine.

Queue Notifications
After a queue is committed by calling SetupCommitFileQueue, it will begin to process the queued
operations. At each step, the queue sends a notification to the callback routine specified in the call to
SetupCommitFileQueue.

Following is the syntax that SetupCommitFileQueue uses to send a notification to the callback routine.

MsgHandler(//the specified callback routine
 Context, //context used by the callback routine
 Notification, //queue notification code
 Param1, //additional notification information
 Param2 //additional notification information
);

The values of Param1 and Param2 contain additional information relevant to the notification being sent to
the callback routine. Each notification, its Param1 and Param2 values, and how the default queue
callback routine handles that notification, is described in detail in File Queue Notifications.

Using File Queues
The following sections describe how to use the setup functions to create a queue, add file operations to a
queue, and commit the queue.

These sections also describe how the setup functions process the platform-specific sections of an INF file
and how to override this functionality.

Opening and Closing a Queue
Before you can queue file operations, you must open a file queue. Calling the SetupOpenFileQueue
function returns a handle to a queue file. This handle is used by subsequent queue functions to reference
the open queue and add operations to it or scan it.

After all the specified file operations have been queued and committed, you must call the
SetupCloseFileQueue function to release resources allocated during the call to SetupOpenFileQueue.

Note    The SetupCloseFileQueue function does not commit the file queue. Any operations that are
uncommitted when SetupCloseFileQueue is called will not be performed.

Queueing Files
After you have obtained a handle to a file queue by calling the SetupOpenFileQueue function, you can
add file operations to the queue, either file-by-file, or by queueing all the files in an INF section.

To add a copy operation for an individual file to the file queue, call the SetupQueueCopy function. If you
want to queue a file copy operation using the default source media and target destinations specified in an
INF file, you can call the SetupQueueDefaultCopy function.

You can add an individual file delete or rename operation to the open file queue, by calling the
SetupQueueDelete or SetupQueueRename function.

Queueing an INF Section
In addition to queueing file operations individually, you can also queue all the files listed in an INF section.

You can queue all the files listed in a Copy Files section of an INF file by calling
SetupQueueCopySection. For this function to be successful, the Copy Files section must be in the
proper format and the INF file, or one of its appended files, must contain the SourceDisksFiles and
SourceDisksNames sections.

Similarly, if you want to delete all the files specified in a Delete Files section of an INF file, you can call
SetupQueueDeleteSection. To rename all the files in a Rename Files section of an INF file use
SetupQueueRenameSection.

Committing a Queue
After all the desired file operations have been queued, the queue must be committed. This causes the
enqueued file operations to be processed.

To commit the file queue, call the SetupCommitFileQueue function, specifying a callback routine. The
callback routine will receive notifications from SetupCommitFileQueue as the file operations are
processed. If you want to use the default queue callback routine, you must first initialize the necessary
context by calling either SetupInitDefaultQueueCallback or SetupInitDefaultQueueCallbackEx. For
more information about the default queue callback routine, see Default Queue Callback Routine.

Note    SetupCommitFileQueue should be called before the queue is closed. Any operations that
are uncommitted when SetupCloseFileQueue is called will not be performed.

Platform Path Override
After a platform path override is set by a call to SetupSetPlatformPathOverride, any setup function that
queues file copy operations will examine the final component of the source path. If the final component
matches the name of the user's platform, the setup function will replace it with the override string set by
SetPlatformPathOverride.

For example, when installing printer drivers onto a MIPS server, you might want to install drivers for all
supported platforms. Queueing the files normally would install the files specified in the MIPS-dependent
sections of the INF file, with source paths such as \\root\source\mips.

To install the files for a second platform, you must call SetupSetPlatformPathOverride to set a platform
override. The following example shows the specific function call to set the platform to Alpha.

test = SetupSetPlatformPathOverride("alpha");

After you set the platform to Alpha, file copy operations sent to the queue with a source path of \\root\
source\mips would have their source path changed to \\root\source\alpha. You would repeat this process
for each platform of interest.

File Queue Reference
The following sections list the data types, functions, and notifications used with file queues.

File Queue Data Types
The following data type is used with file queues.

HSPFILEQ Handle to a file queue.

File Queue Functions
The following functions are used with file queues

SetupCloseFileQueue Terminates the queue. Any
remaining transactions are not
committed.

SetupCommitFileQueue Commits all queued transactions.
SetupOpenFileQueue Initializes and returns a handle to

the file queue.
SetupPromptReboot Prompts the user to reboot his or

her computer, if necessary.
SetupQueueCopy Queues a file copy.
SetupQueueCopySection Queues the files in an INF Copy

Files section.
SetupQueueDefaultCopy Queues the files in an INF Copy

Files section using the default
information specified in an INF
file.

SetupQueueDelete Queues a file deletion.
SetupQueueDeleteSection Queues the files in an INF Delete

Files section.
SetupQueueRename Queues a file rename.
SetupQueueRenameSection Queues the files in an INF

Rename Files section.
SetupScanFileQueue Scans the file queue.
SetupSetPlatformPathOverride Sets the platform path override.

File Queue Notifications
The following notifications are used with file queues.    For more information about the format and use of
notifications, see Notifications.

SPFILENOTIFY_COPYERROR An error occurred during a file
copying operation.

SPFILENOTIFY_DELETEERROR An error occurred during a file
deletion operation.

SPFILENOTIFY_ENDCOPY A file copying operation has
ended.

SPFILENOTIFY_ENDDELETE A file deletion operation has
ended.

SPFILENOTIFY_ENDQUEUE The queue has finished
committing.

SPFILENOTIFY_ENDRENAME A file rename operation has
ended.

SPFILENOTIFY_ENDSUBQUEUE A subqueue (either copy,
rename or delete) has ended.

SPFILENOTIFY_FILEOPDELAYED The file was in use, and the
current operation has been
delayed until the system is
rebooted.

SPFILENOTIFY_LANGMISMATCH The language of the current
operation does not match the
system language.

SPFILENOTIFY_NEEDMEDIA New source media is needed.
SPFILENOTIFY_QUEUESCAN A node in the file queue has

been scanned.
(SetupScanFileQueue only)

SPFILENOTIFY_RENAMEERROR An error occurred during a file
renaming operation.

SPFILENOTIFY_STARTCOPY A file copy operation has started.
SPFILENOTIFY_STARTDELETE A file delete operation has

started.
SPFILENOTIFY_STARTQUEUE The queue has started to

commit.
SPFILENOTIFY_STARTRENAME A file rename operation has

started.
SPFILENOTIFY_STARTSUBQUEU
E

A subqueue (either copy,
rename or delete) has started.

SPFILENOTIFY_TARGETEXISTS A copy of the specified file
already exists on the target.

SPFILENOTIFY_TARGETNEWER A newer version of the specified
file exists on the target.

Default Queue Callback Routine
Included with the setup functions is a default callback routine, SetupDefaultQueueCallback, that you can
use to process notifications returned by SetupCommitFileQueue.

The following sections discuss the format of the default queue callback routine, using the default queue
callback routine with SetupCommitFileQueue, and how to create a filter callback routine that builds on
the functionality provided by the default queue callback routine.

About the Default Queue Callback Routine
The default queue callback routine handles notifications sent by SetupCommitFileQueue in a generic
manner. By using the default routine, you get a ready-made user interface to create common setup dialog
boxes. It is recommended that you use the default queue callback routine, both for ease of use, and to
ensure a consistent appearance and behavior of dialog boxes generated during the installation.

The default callback routine requires a context structure for internal record keeping. In addition, the queue
passes additional information relevant to the current notification in a set of parameters, Param1 and
Param2.

For example, if the queue sends an SPFILENOTIFY_NEEDMEDIA notification to the default callback
routine, Param1 points to a SOURCE_MEDIA structure that contains information about the media
needed, and Param2 points to a character array that can receive new path information from the user.

The default callback routine uses this information to prompt the user to either insert the needed source
media, specify a new path, skip copying the current file, or cancel the current operation. The default
queue callback routine returns FILEOP_NEWPATH, FILEOP_DOIT , FILEOP_SKIP, or FILEOP_ABORT
to the queue, depending on which action the user took.

For information on how the default queue callback routine handles each queue notification, see File
Queue Notifications.

Creating a Custom Queue Callback Routine
In addition to using the default queue callback, you can write a custom callback routine. This function
must have the same form as those pointed to by SP_FILE_CALLBACK. This is useful if you need a
callback routine to handle a notification in a manner other than that provided by the default queue
callback routine.

If only a small portion of the default queue callback routine's behavior needs to be changed, you can
create a custom callback routine to filter the notifications, handling only those that require special
behavior and calling SetupDefaultQueueCallback for the others.

For example, if you wanted to custom-handle file delete errors, you could create a custom callback
function, MyCallback. This function would intercept and process SPFILENOTIFY_DELETEERROR
notifications, and call the default queue callback function for all other notifications. MyCallback returns a
value for the delete error notifications. For all other notifications, MyCallback passes whatever value the
default queue callback routine returned to the queue.

This flow of control is illustrated in the following diagram.

{ewc msdncd, EWGraphic, bsd23560 0 /a "SDK.WMF"}

For an example of a setup application that uses a custom callback function, see the Win32 Code
Samples.

Important    If the custom callback function calls the default queue callback routine, it must pass
the void pointer returned by SetupInitDefaultQueueCallback or SetupInitDefaultQueueCallbackEx
to the default callback routine.

Using the Default Queue Callback Routine
The default queue callback routine can be specified to handle notifications sent by
SetupCommitFileQueue, or it can be called by a custom callback routine that builds on the functionality
of the default queue callback routine.

The following sections explain how to initialize and terminate the context used by a default queue callback
routine. The sections also describe how to use the default queue callback routine with
SetupCommitFileQueue or a custom callback routine.

Initializing and Terminating the Callback Context
Before the default queue callback routine can be used, either by specifying it as the callback routine when
committing a file queue, or by calling it from a custom callback routine, it must be initialized.

The SetupInitDefaultQueueCallback function builds the context structure that is used by the default
queue callback routine. It returns a void pointer to that structure. This structure is essential for the default
callback routine's operation and must be passed to the callback routine. You do can this either by
specifying the void pointer as the context in a call to SetupCommitFileQueue, or by specifying the void
pointer as the context parameter when calling SetupDefaultQueueCallback from a custom callback
routine. This context structure must not be altered or referenced by the setup application.

The SetupInitDefaultQueueCallbackEx function also initializes a context for the default queue callback
routine, but it specifies a second window to receive a caller-specified progress message each time the
queue sends a notification. This enables you to use the default disk prompting and error dialog boxes,
and to also embed a progress bar in a second window, for example, in a page of an installation wizard.

Regardless of whether you initialized the context used by the default queue callback routine with
SetupInitDefaultQueueCallback or SetupInitDefaultQueueCallbackEx, after the queued operations
have finished processing, call SetupTermDefaultQueueCallback to release the resources allocated in
initializing the context structure.

Calling the Default Queue Callback Routine
If the default queue callback routine is initialized and specified when SetupCommitFileQueue is called,
the queue calls the the default queue callback routine internally and you need do nothing more.

If you create a filter callback routine that relies on the default queue callback routine to handle a subset of
the queue notifications, your filter callback routine must call SetupDefaultQueueCallback explicitly.

Important    When you call SetupDefaultQueueCallback explicitly, you must pass in the void
pointer returned by either SetupInitDefaultQueueCallback or SetupInitDefaultQueueCallbackEx.

One way to do this is to create a context structure for your custom callback routine that includes as
one of its members the void pointer returned by SetupInitDefaultQueueCallback or
SetupInitDefaultQueueCallbackEx.

Default Queue Callback Routine Reference
The following sections list the functions used with the default queue callback routine.

Default Queue Callback Routine Functions
The following functions are used with the default queue callback routine.

SetupDefaultQueueCallback The default queue callback
routine.

SetupInitDefaultQueueCallback Initializes context information
needed by the default queue
callback routine.

SetupInitDefaultQueueCallbackE
x

Initializes context information
needed by the default queue
callback routine and specifies an
alternate window to display
progress messages.

SetupTermDefaultQueueCallbac
k

Releases resources allocated by
SetupInitDefaultQueueCallback
and
SetupInitDefaultQueueCallback
Ex.

Cabinet Files
Cabinet files provide a compact and organized way to store compressed source files. The following topics
describe what cabinet files are and how they are processed by the setup functions.

About Cabinet Files
A cabinet is a single file, usually suffixed with .CAB, that stores compressed files in a file library. A
compressed file can be spread over several cabinet files. During installation, the setup application
decompresses the files stored in a cabinet and copies them to the user's system.

If cabinet files are used, the setup functions use the name of the cabinet as the tag file for the source disk
it resides on.

Using Cabinet Files
The setup functions handle cabinets internally. To explicitly enumerate and extract files from a cabinet,
you can call the SetupIterateCabinet function.

The following topic describes the cabinet processing internal to the setup functions and how to use
SetupIterateCabinet.

Also discussed are the notifications sent by SetupIterateCabinet and the required format of a cabinet
callback routine to process those notifications.

Extracting Files from Cabinets
You can extract files from a cabinet in two ways. The first and simplest way is to take advantage of the
automatic cabinet processing built into the setup functions.

The installation functions, such as SetupCommitFileQueue, SetupInstallFile, and
SetupInstallFromInfSection, check the compression on each file. If the file is in a cabinet, the functions
first search for a file of that name outside the cabinet. If found, the functions install the external file,
ignoring the file inside the cabinet. This enables you to update a single file inside the cabinet without
rebuilding the cabinet.

The setup functions also track which files in a cabinet have been retrieved, so that a file is extracted only
once, even if it is installed several times.

The second way to extract files from a cabinet is by using SetupIterateCabinet. This function iterates
through each file in a cabinet, sending a notification to a callback routine for each file found. The callback
routine then returns a value that indicates whether the file should be extracted or skipped.

Note    The Setup API does not supply a default callback routine to handle cabinet notifications. If
you call SetupIterateCabinet explicitly, you must supply a callback routine to process the cabinet
notifications that the function returns.

Creating a Cabinet Callback Routine
Because the Setup API does not supply a default cabinet callback routine, you need to supply a routine.
The callback routine that the SetupIterateCabinet function requires must have the same form as those
pointed to by SP_FILE_CALLBACK.

Following is the syntax that SetupIterateCabinet uses to send a notification to the callback routine.

MsgHandler(//the specified callback routine
 Context, //context used by the callback routine
 Notification, //cabinet notification
 Param1, //additional notification information
 Param2 //additional notification information
);

The Context parameter is a void pointer to a context variable or structure that can be used by the callback
routine to store information that needs to persist between subsequent calls to the callback routine.

This context's implementation is specified by the callback routine, and it is never referenced or altered by
SetupIterateCabinet.

The Notification parameter is an unsigned integer and will be one of the following values.

SPFILENOTIFY_FILEEXTRACTED The file has been extracted
from the cabinet.

SPFILENOTIFY_FILEINCABINET A file is encountered in the
cabinet.

SPFILENOTIFY_NEEDNEWCABIN
ET

The current file is continued in
the next cabinet.

The final two parameters, Param1 and Param2, are also unsigned integers and contain additional
information relevant to the notification. For more information about the notifications sent by
SetupIterateCabinet, see Cabinet File Notifications.

A SP_FILE_NOTIFY_CALLBACK routine returns an unsigned integer. The cabinet callback routine
should return one of the following values depending on the notification.

For the SPFILENOTIFY_FILEINCABINET notification, SetupIterateCabinet expects one of the following
values to be returned by the callback routine.

FILEOP_ABORT Abort cabinet processing.
FILEOP_DOIT Extract the current file.
FILEOP_SKIP Skip the current file.

For SPFILENOTIFY_NEEDNEWCABINET and SPFILENOTIFY_FILEEXTRACTED notifications,
SetupIterateCabient expects one of the following values to be returned by the callback routine.

NO_ERROR No error was encountered, continue
processing the cabinet.

ERROR_XXX An error of the specified type occurred.
The SetupIterateCabinet function will
return FALSE, and the specified error
code will be returned by a call to
GetLastError.

If the callback routine returns FILEOP_DOIT, the routine must also provide a full target path. For more

information see SPFILENOTIFY_FILEINCABINET.

Cabinet File Reference
The following sections list the structures, functions, and notifications used with cabinet files.

Cabinet File Structures
The following structures are used with cabinets.

CABINET_INFO Cabinet file information.
FILE_IN_CABINET_INFO Information about a file in a cabinet.

Cabinet File Functions
The following function is used with cabinets.

SetupIterateCabinet Returns a notification for each file
stored in a cabinet file.

Cabinet File Notifications
The following notifications are sent by SetupIterateCabinet. For more information about the format and
use of notifications, see Notifications.

SPFILENOTIFY_FILEEXTRACTED The file has been extracted
from the cabinet.

SPFILENOTIFY_FILEINCABINET A file is encountered in the
cabinet, does the application
want to extract it?

SPFILENOTIFY_NEEDNEWCABINET The current file is continued in
the next cabinet.

MRU Source List
The Setup API provides functions that store the most recently used (MRU) source directories. This
information is stored on the user's system and can be accessed by subsequent installations.

The following topics describe the MRU source list and how to use the setup functions to open, modify,
scan, and close it.

About the MRU Source List
The most recently used (MRU) source list remains resident on the user's system. The setup functions
internally handle the creation of new source lists and their location on the user's machine. The setup
functions use this list to store information about source paths used in previous installations.

You can use this information when prompting the user for a source path. For example, you could create a
drop-down list of the network connections used as source paths in previous installations.

Depending on your permissions, you can create a user list, one that is specific to a particular user, or a
system list, one that is the same for all users. In addition to system and user source lists you can create a
temporary source list that is discarded when the setup application exits.

Using the MRU Source List
The SetupSetSourceList function will open or create a source list on the user's system. You can specify
to set the user list, the system list, a combination of the user and system lists, or a temporary list as the
MRU source list. If a temporary list is used, it will be the only list available to the setup application until
SetupCancelTemporarySourceList is called, or SetupSetSourceList is called a second time.

After a list is set, you can query the source list by using SetupQuerySourceList to obtain an array of the
source paths. When the source list array is no longer needed, you must call the SetupFreeSourceList
function to free the resources allocated by SetupQuerySourceList.

To add a path to a source list, either one that is resident on the user's system, or a temporary list, call
SetupAddToSourceList. If the source list specified is not temporary, that source will remain on the user's
system and is accessible to subsequent installations.

To remove a path from the source path, call the SetupRemoveFromSourceList function.

MRU Source List Reference
The following topics list the setup functions that provide MRU functionality.

MRU Source Functions
The following functions are used with MRU source file lists.

SetupAddToSourceList Adds an entry to a source list.
SetupCancelTemporarySourceLis
t

Cancels any temporary list or
no-browse behavior and
reestablishes standard list
behavior.

SetupFreeSourceList Frees resources allocated to a
source list.

SetupQuerySourceList Queries the current list of
installation sources.

SetupRemoveFromSourceList Removes an entry from an
installation source list.

SetupSetSourceList Sets the installation source list to
the system MRU list, the user
MRU list, or a temporary list.

File Log
The file log is resident on the user's system and stores information about the files copied during an
installation. The following topics describe the types of file logs and how to use the setup functions to
open, modify, and close them.

About the File Log
A file log records information about the files copied to a system during an installation. It can be used for
emergency repair or as a diagnostic tool.

The file used to log file installations can either be the system log, the file used by the system to store a
record of the files installed with the Windows NT operating system, or any other file log that you specify.

Using the File Log
Before you can use a file log, you must call SetupInitializeFileLog to open or create it. When you call
this function, you can specify flags to create or overwrite a file log, open the system log, or open a file log
as read-only.

After SetupInitializeFileLog returns a handle to a file log, you can add an entry by calling SetupLogFile,
delete an entry by calling SetupRemoveFileLogEntry, or retrieve information about a particular file in a
file log by calling SetupQueryFileLog.

When the file log is no longer needed, SetupTerminateFileLog should be called to release the resources
allocated during the call to SetupInitializeFileLog.

File Log Reference
The following sections lists the setup functions that provide file log functionality.

File Log Functions
The following functions are used with file logs.

SetupInitializeFileLog Initializes a log file for use.
SetupLogFile Adds an entry to the log file.
SetupQueryFileLog Retrieves information from a log

file.
SetupRemoveFileLogEntry Removes an entry from a log file.
SetupTerminateFileLog Releases resources allocated to a

log file.

Creating Setup Applications
After you create an INF file, you will typically write the source code for your setup application. You call the
setup functions from your setup application to perform many installation operations.

The following sections discuss the steps of a typical installation, and provide specific examples of how
you can use the setup functions to perform stage of the installation.

For an example of a complete setup application that implements the following setup procedure, see
DOINST.C, included with the Win32 Code Samples.

Steps of an Installation Program
The following list outlines one way to use setup functions to create a setup application. You can use this
example as a starting point, or develop your own installation algorithm.

Each step is described in detail in following topics.

Initialization

· Open the INF and, if appropriate, append other INF files.
· Extract file information from the INF file.
· Gather setup information from the user.
· Create a queue.

Install files

· Commit the queue, specifying a callback routine.
· Update registry information.

Clean up

· Close the file queue and INF.
· Release any other system resources and end the program.

Opening the INF File
You must use the SetupOpenInfFile function to open the INF file before you can retrieve information from
it, or append other INF files to it.

The following example opens an INF file.

HINF MyInf; //variable to hold the INF handle
PUINT ErrorLine; //variable to point to errors returned
BOOL test; //variable to receive function success

MyInf = SetupOpenInfFile (
 szInfFileName, //the filename of the inf file to open
 NULL, //optional class information
 INF_STYLE_WIN4, //the inf style
 ErrorLine //line number of the syntax error
);

In the preceding example, MyInf is the handle returned by SetupOpenInfFile to the opened INF file. The
parameter szInfFileName specifies the name of the INF file to open. The INF class is specified as NULL.
This indicates that the Class key should be ignored. The INF_STYLE_WIN4 value specifies that the INF
file is formatted in the INF format used with Windows 95 and Windows NT 4.0. The ErrorLine parameter is
a pointer to a variable that receives the line number of an error that the SetupOpenInfFile function
generates.

After an INF file is opened, you can call the SetupOpenAppendInfFile function to append a file to the
open INF file. To append several files, repeat this process.

If you call the SetupOpenAppendInfFile function and the filename passed to it is NULL, then the function
will search the Version section of the open INF file (and any appended INF files) for a LayoutFile key. If
the function finds a key, it will append the file specified by that key (usually LAYOUT.INF). When multiple
INF files have been combined, SetupOpenAppendInfFile starts with the last appended INF file when it
searches for a Version section.

The following example appends the szSecondInfFileName file to the open file, szInfFileName.

test = SetupOpenAppendInfFile (
 szSecondInfFileName, //name of the inf file to append
 //to the open inf file, if NULL,
 //the fn searches for the LayoutInf
 //key in the version section, and
 //appends the file specified there.
 MyInf, //handle of the open inf file
 ErrorLine //pointer to an unsigned integer that
 //receives error information
);

In the example, szSecondInfFileName is the name of the file to append to the open INF file. MyInf is the
handle to the open INF file returned by the previous call to the SetupOpenInfFile function. The parameter
ErrorLine points to a variable that will receive any error information generated by the
SetupOpenAppendInfFile function.

Extracting File Information from the INF file
After the INF file is opened, you can gather information from it to build the user interface, or to direct the
installation process. The setup functions provide several levels of functionality for gathering information
from an INF file.

To gather information… Use these functions…
About the INF file SetupGetInfInformation

SetupQueryInfFileInformation
SetupQueryInfVersionInformatio
n.

About source and target files SetupGetSourceFileLocation

SetupGetSourceFileSize
SetupGetTargetPath
SetupGetSourceInfo

From a line of an INF file SetupGetLineText
SetupFindNextLine
SetupFindNextMatchLine
SetupGetLineByIndex
SetupFindFirstLine

From a field of a line in an INF file SetupGetStringField

SetupGetIntField,
SetupGetBinaryField
SetupGetMultiSzField

The following example uses the SetupGetSourceInfo function to retrieve the human-readable description
of a source media from an INF file.

test = SetupGetSourceInfo (
 MyInf, \\Handle to the INF file to access
 SourceId, \\Id of the source media
 SRCINFO_DESCRIPTION, \\which information to retrieve
 Buffer, \\a pointer to the buffer to
 \\ receive the information
 MaxBufSize, \\the size allocated for the buffer
 &BufSize \\buffer size actually needed
);

In the example, MyInf is the handle to the open INF file. SourceId is the identifier for a specific source
media. The value SRCINFO_DESCRIPTION specifies that the SetupGetSourceInfo function should
retrieve the source media description. Buffer points to a string that will receive the description,
MaxBufSize indicates the resources allocated to the buffer, and BufSize indicates the resources
necessary to store the buffer.

If BufSize is greater than MaxBufSize, the function will return FALSE, and a subsequent call to
GetLastError will return ERROR_INSUFFICIENT_BUFFER.

Gathering Setup Information from the User
It is highly recommended that your setup application include a user interface that acquires any necessary
information from the user. This functionality is not supplied by the setup functions and must be
implemented by your setup application, usually in the form of an installation wizard.

Creating a Queue and Queueing File Operations
Queuing the file operations is useful because it enables you to process the installation as a whole, instead
of by INF section.

To create a file queue, declare a variable to store the queue handle, then call the SetupOpenFileQueue
function.

HSPFILEQ MyQueue; \\variable to hold the queue
 \\handle
MyQueue = SetupOpenFileQueue(); \\create the queue

In the example, MyQueue is the handle to the queue created by SetupOpenFileQueue.

After the queue is created, you can queue copy, rename, and delete operations, as well as scan the file
queue to verify enqueued operations.

To add single file operations to the queue, use the SetupQueueCopy, SetupQueueRename, and
SetupQueueDelete functions.

All the file operations listed in a Copy Files, Delete Files, or Rename Files section can be added to the
queue by using SetupQueueCopySection, SetupQueueDeleteSection, or
SetupQueueRenameSection, respectively.

Another way to queue all the files in a Copy Files section of an INF is to use the function,
SetupInstallFilesFromInfSection.

The following example uses the SetupQueueCopySection function to enqueue copy operations for all
the files listed in a Copy Files section of an INF file.

test = SetupQueueCopySection(
 MyQueue, \\Handle of the open queue
 "A:\", \\Source root path
 MyInf, \\Inf containing the source info
 NULL, \\specifies that MyInf contains
 \\ the section to copy as well
 MySection, \\the name of the section to queue

 \\flags specifying the copy style
 SP_COPY_NO_SKIP | SP_COPY_NO_BROWSE,
);

In the example, MyQueue is the queue to add copy operations to, "A:\" specifies the path to the source,
and MyInf is the handle to the open INF file. The parameter ListInfHandle is set to NULL, indicating that
the section for copying is in MyInf. MySection is the section in MyInf containing the files to queue for
copying.

The flags SP_COPY_NO_SKIP and SP_COPY_NO_BROWSE have been combined using an OR
operator to indicate that the user should not be offered options to skip or browse for files if errors occur.

Committing the Queue
If the default callback function is going to be called during the queue commitment, the context for it must
be initialized using the SetupInitDefaultQueueCallback or SetupInitDefaultQueueCallbackEx
functions. If you are using a custom callback function that never calls the default callback function, this
step is not necessary.

PVOID Context; \\variable to store the context returned

 \\initialize the context
Context = SetupInitDefaultQueueCallback(OwnerWindow);

In the example, OwnerWindow is the handle to the window that is to become the parent window of any
dialog boxes that the default callback function generates.

After the queue is built and the callback function that will process queue notifications has been initialized,
you can call SetupCommitFileQueue to commit the operations that have been enqueued.

The following example uses SetupCommitFileQueue to commit the queue using the default callback
routine.

test = SetupCommitFileQueue (
 OwnerWindow, //window that will own dialog boxes
 //created by the callback routine
 MyQueue, //the queue to commit

 //use the default callback routine
 SetupDefaultQueueCallback

 Context //context information that will be
 // used by the callback routine
);

In the preceding example, MyQueue is the queue to commit, OwnerWindow is the window that will own
any dialog boxes created by the default callback routine, SetupDefaultQueueCallback specifies that the
default callback function will be used, and Context is a pointer to the structure returned by the previous
call to SetupInitDefaultQueueCallback.

Updating Registry Information
After the queue has successfully committed, you will need to update registry information for the product
you are installing. It is reccommended that you wait until all necessary file copy operations have been
successfully completed before altering registry information.

One way to update the registry is to call SetupInstallFromInfSection with the SPINST_INIFILES,
SPINST_REGISTRY, or SPINST_INI2REG flags specified. These flags can be combined in one call to
SetupInstallFromInfSection.

The following example uses SPINST_ALL^SPINST_FILES to indicate that the function should process all
of the listed operations except file operations. Since only INI, registry, and file operations are listed in the
Install section, this is a shorthand method of specifying the function should process all INI and registry
operations.

The following example shows how to install registry information using the SetupInstallFromINFSection
function.

Test = SetupInstallFromINFSection (
 NULL, \\Window to own any dialog boxes
 \\ created
 MyInf, \\INF file containing the section
 MySection, \\the section to install
 SPINST_ALL ^ SPINST_FILES,\\which installation operations
 \\ to process
 NULL, \\the relative root key
 "A:\", \\the source root path
 0, \\copy style
 NULL, \\Message handler routine
 NULL, \\Context
 NULL, \\Device info set
 NULL \\device info data
);

In the example, OwnerWindow is NULL because only file operations generate dialog boxes, and thus a
parent window is not needed. MyInf is the INF file containing the section to process. The parameter,
MySection, specifies the section to be installed. The combined flags, SPINST_ALL ^ SPINST_FILES,
specify which installation operations to process, in this case, all operations except file operations. The
source root path is specified as "A:\".

Since no copy operations are being processed, the CopyFlags, MsgHandler, Context, DeviceInfoSet, and
DeviceInfoData parameters are not specified.

Closing the File Queue and INF File
After the queue has finished committing its operations, it should be closed so that resources allocated to
the queue can be released.

SetupCloseFileQueue(MyQueue); //close file queue

Where MyQueue is the handle to the queue created by SetupOpenFileQueue.

If a default context was initiated for use by the default callback routine, it should also be terminated by
calling SetupTermDefaultQueueCallback.

SetupTermDefaultQueueCallback(Context); //release default context
 // resources

In the example Context is a pointer to the structure returned by the SetupInitDefaultQueueCallback
function.

When access to the INF information is no longer needed, call the SetupCloseInfFile function to free
system resources.

SetupCloseInfFile(MyInf); //close inf file

MyInf is the handle to the open INF file returned by the SetupOpenInfFile function.

Releasing Other System Resources
If a source list or log file was used, resources should be released by calling SetupFreeSourceList or
SetupTerminateFileLog.

Reference
The following sections describe in detail the data types, structures, functions, and notifications of the
Setup API.

Data Types
The following data types are used by the setup functions.

HINF Handle to a loaded INF file.
HSPFILELOG Handle to a log file.
HSPFILEQ Handle to a setup file queue.
SP_FILE_CALLBACK Pointer to a callback routine.

SP_FILE_CALLBACK       

   

[New - Windows NT]

The SP_FILE_CALLBACK data type is a pointer to a callback routine that has the format expected by
the setup functions. For information on how to build a callback routine, see Notifications, Creating a
Custom Queue Callback Routine, and Creating a Cabinet Callback Routine.

typedef UINT (*PSP_FILE_CALLBACK)(
 PVOID Context, //context used by the callback routine
 UINT Notification, //notification sent to callback routine
 UINT Param1, //additional notification information
 UINT Param2 //additional notification information
);

Members

Context
Supplies context information about the queue notification being returned to the callback function.

Notification
Specifies the occurrence that triggered the call to the callback function.

Param1
Specifies additional notification information; the value is dependent on which notification is being
returned.

Param2
Specifies additional notification information; the value is dependent on which notification is being
returned.

See Also
SetupCommitFileQueue, SetupInstallFile, SetupInstallFileEx, SetupInstallFromInfSection,
SetupIterateCabinet

Structures
The following structures are used by the setup functions.

CABINET_INFO
FILE_IN_CABINET_INFO
FILEPATHS
INFCONTEXT
SOURCE_MEDIA
SP_INF_INFORMATION

CABINET_INFO       

   

[New - Windows NT]

The CABINET_INFO structure stores information about a cabinet file. The SetupIterateCabinet function
specifies this structure as a parameter when it sends a SPFILENOTIFY_NEEDNEWCABINET notification
to the cabinet callback routine.

typedef struct _CABINET_INFO {
 PCTSTR CabinetPath;
 PCTSTR CabinetFile;
 PCTSTR DiskName;
 USHORT SetId;
 USHORT CabinetNumber;
} CABINET_INFO, *PCABINET_INFO;

Members

CabinetPath
The path to the cabinet file.

CabinetFile
The name of the cabinet file.

DiskName
The name of the source media that contains the cabinet file.

SetId
The identifier of the current set. This number is generated by the software that builds the cabinet.

CabinetNumber
The number of the cabinet. This number is generated by the software that builds the cabinet and is
generally a 0- or 1-based index indicating the ordinal of the position of the cabinet within a set.

See Also
SPFILENOTIFY_NEEDNEWCABINET, FILE_IN_CABINET_INFO

FILE_IN_CABINET_INFO       

   

[New - Windows NT]

The FILE_IN_CABINET_INFO structure provides information about a file found in the cabinet. The
SetupIterateCabinet function sends this structure as one of the parameters when it sends a
SPFILENOTIFY_FILEINCABINET notification to the cabinet callback routine.

typedef struct _FILE_IN_CABINET_INFO {
 PCTSTR NameInCabinet;
 DWORD FileSize;
 DWORD Win32Error;
 WORD DosDate;
 WORD DosTime;
 WORD DosAttribs;
 TCHAR FullTargetName[MAX_PATH];
} FILE_IN_CABINET_INFO, *PFILE_IN_CABINET_INFO;

Members

NameInCabinet
Specifies the filename as it exists within the cabinet file.

FileSize
Specifies the uncompressed size of the file in the cabinet.

Win32Error
If applicable, the Win32 error value associated with the file in the cabinet.

DosDate
The date that the file was last saved.

DosTime
The MS-DOS timestamp of the file in the cabinet.

DosAttribs
The attributes of the file in the cabinet.

FullTargetName[MAX_PATH]
The target path and filename.

See Also
CABINET_INFO

FILEPATHS       

   

[New - Windows NT]

The FILEPATHS structure stores source and target path information. The setup functions send the
FILEPATHS structure as a parameter in several of the notifications sent to callback routines. For more
information, see Notifications.

typedef struct _FILEPATHS {
 PCTSTR Target;
 PCTSTR Source;
 UINT Win32Error;
 DWORD Flags;
} FILEPATHS, *PFILEPATHS;

Members

Target
The path to the target file.

Source
The path to the source file. This member is not used when the FILEPATHS structure is used with a
file delete operation.

Win32Error
If an error occurs, this parameter takes the Win32 error value associated with the specified paths. If
no error has occurred, it takes the value NO_ERROR.

Flags
Specifies additional information that depends on the notification sent with the FILEPATHS structure.
For SPFILENOTIFY_COPYERROR notifications, Flags specifies dialog box behavior and can be one
of the following values.
SP_COPY_WARNIFSKIP

Inform the user that skipping the file may affect the installation.
SP_COPY_NOSKIP

Do not offer the user the option to skip the file.
SP_COPY_NOBROWSE

Do not offer the user the option to browse.
For SPFILENOTIFY_FILEOPDELAYED notifications, Flags specifies the type of file operation
delayed and can be one of the following values.

FILEOP_DELETE A file delete operation was delayed.
FILEOP_COPY A file copy operation was delayed.

INFCONTEXT       

   

[New - Windows NT]

The INFCONTEXT structure stores context information that functions such as SetupGetLineText use to
navigate INF files.

typedef struct _INFCONTEXT {
 HINF Inf; //handle of the open INF file
 HINF CurrentInf; //handle of the current INF file
 UINT Section; //a section of the current INF file
 UINT Line; //a line of the INF section
} INFCONTEXT, *PINFCONTEXT;

Members

Inf
A handle to the INF file returned by SetupOpenInfFile.

CurrentInf
A pointer to the current INF file. The Inf member may point to multiple files if they were appended to
the open INF file using SetupOpenAppendInfFile.

Section
Specifies a section in the current INF file.

Line
Specifies a line of the current section in the INF file.

Important    The setup functions use this structure internally and it must not be accessed or
modified by applications. It is included here for informational purposes only.

See Also
SetupFindFirstLine, SetupFindNextLine, SetupFindNextMatchLine

SOURCE_MEDIA       

   

[New - Windows NT]

The SOURCE_MEDIA structure is used with the SPFILENOTIFY_NEEDMEDIA notification to pass
source media information.

typedef struct _SOURCE_MEDIA {
 PCTSTR Reserved;
 PCTSTR Tagfile;
 PCTSTR Description;
 PCTSTR SourcePath;
 PCTSTR SourceFile;
 DWORD Flags;
} SOURCE_MEDIA, *PSOURCE_MEDIA;

Members

Reserved
This member is not currently used.

Tagfile
This optional member specifies the tag file that can be used to identify the source media.

Description
The human-readable description of the source media.

SourcePath
The path to the source that needs the new media.

SourceFile
The source file to be retrieved from the new media.

Flags
Specifies copy style information that modifies how errors are handled. This member can be one or
more of the following values:
SP_COPY_WARNIFSKIP

Inform the user that skipping the file may affect the installation.
SP_COPY_NOSKIP

Do not offer the user the option to skip the file.
SP_FLAG_CABINETCONTINUATION

The current source file is continued in another cabinet file.
SP_COPY_NOBROWSE

Do not offer the user the option to browse.

See Also
SPFILENOTIFY_NEEDMEDIA

SP_INF_INFORMATION       

   

[New - Windows NT]

The SP_INF_INFORMATION structure stores information about an INF file, including the style, number of
constituent INF files, and version data.

typedef struct _SP_INF_INFORMATION {
 DWORD InfStyle; //the style of the INF file
 DWORD InfCount; //number of constituent INF files
 BYTE VersionData[ANYSIZE_ARRAY];
 //array to store the INF information
} SP_INF_INFORMATION, *PSP_INF_INFORMATION;

Members

InfStyle
Specifies the style of the INF file. This member can be one of the following values.

Value Meaning
INF_STYLE_NONE Specifies that the style of the INF

file is unrecognized or
nonexistent.

INF_STYLE_OLDNT Specifies a Windows NT 3.x style
INF file.

INF_STYLE_WIN4 Specifies a Windows 95- or
Windows NT-style INF file.

InfCount
Specifies the number of constituent INF files.

VersionData[ANYSIZE_ARRAY]
Stores information from the Version section of an INF file in an array of ANYSIZE_ARRAY bytes.

See Also
SetupGetInfInformation, SetupQueryInfFileInformation, SetupQueryInfVersionInformation

Functions
The following functions are used in the Setup API.

SetupAddToSourceList
SetupCancelTemporarySourceList
SetupCloseFileQueue
SetupCloseInfFile
SetupCommitFileQueue
SetupCopyError
SetupDecompressOrCopyFile
SetupDefaultQueueCallback
SetupDeleteError
SetupFindFirstLine
SetupFindNextLine
SetupFindNextMatchLine
SetupFreeSourceList
SetupGetBinaryField
SetupGetFieldCount
SetupGetFileCompressionInfo
SetupGetInfFileList
SetupGetInfInformation
SetupGetIntField
SetupGetLineByIndex
SetupGetLineCount
SetupGetLineText
SetupGetMultiSzField
SetupGetSourceFileLocation
SetupGetSourceFileSize
SetupGetSourceInfo
SetupGetStringField
SetupGetTargetPath
SetupInitDefaultQueueCallback
SetupInitDefaultQueueCallbackEx
SetupInitializeFileLog
SetupInstallFile
SetupInstallFileEx
SetupInstallFilesFromInfSection
SetupInstallFromInfSection
SetupInstallServicesFromInfSection
SetupIterateCabinet
SetupLogFile
SetupOpenAppendInfFile
SetupOpenFileQueue
SetupOpenInfFile
SetupOpenMasterInf
SetupPromptForDisk
SetupPromptReboot
SetupQueryFileLog
SetupQueryInfFileInformation
SetupQueryInfVersionInformation
SetupQuerySourceList
SetupQueueCopy
SetupQueueCopySection
SetupQueueDefaultCopy

SetupQueueDelete
SetupQueueDeleteSection
SetupQueueRename
SetupQueueRenameSection
SetupRemoveFileLogEntry
SetupRemoveFromSourceList
SetupRenameError
SetupScanFileQueue
SetupSetDirectoryId
SetupSetPlatformPathOverride
SetupSetSourceList
SetupTermDefaultQueueCallback
SetupTerminateFileLog

SetupAddToSourceList       

   

[New - Windows NT]

The SetupAddToSourceList function appends a value to the list of installation sources for either the
current user or the system. If the value already exists, it is removed first, so that duplicate entries are not
created.

BOOL SetupAddToSourceList(
        DWORD Flags, // specifies a list to append to
        PCTSTR Source // the source to add to the list
     );

Parameters
Flags

Specifies which list to append the source to. This parameter can be any combination of the following
values:
SRCLIST_SYSTEM

Add the source to the per-system list. The caller must be an administrator.
SRCLIST_USER

Add the source to the per-user list.
SRCLIST_SYSIFADMIN

If the caller is an administrator, the source is added to the per-system list; if the caller is not a
member of the administrators local group, the source is added to the per-user list for the current
user.

Note If a temporary list is currently in use (see SetupSetSourceList), the preceding flags are
ignored and the source is added to the temporary list.

SRCLIST_APPEND
Add the source to the end of the list. If this flag is not specified, the source is added to the
beginning of the list.

Source
Pointer to the source to add to the list.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupRemoveFromSourceList, SetupSetSourceList

SetupCancelTemporarySourceList       

   

[New - Windows NT]

The SetupCancelTemporarySourceList function cancels any temporary list and no-browse behavior
and reestablishes standard list behavior.

BOOL SetupCancelTemporarySourceList(
        VOID // takes no parameters
     );

Parameters
None.

Return Values
If a temporary list was in effect, the return value is TRUE. Otherwise, the return value is FALSE.

See Also
SetupSetSourceList

SetupCloseFileQueue       

   

[New - Windows NT]

The SetupCloseFileQueue function destroys a setup file queue.

VOID SetupCloseFileQueue(
        HSPFILEQ QueueHandle // handle to the file queue to close
     );

Parameters
QueueHandle

Handle to an open setup file queue.

Remarks
The SetupCloseFileQueue function does not flush the queue; pending operations are not performed. To
commit a file queue before closing it call SetupCommitFileQueue.

See Also
SetupCommitFileQueue, SetupInstallFile, SetupQueueCopy, SetupQueueDefaultCopy,
SetupQueueDelete, SetupQueueRename

SetupCloseInfFile       

   

[New - Windows NT]

The SetupCloseInfFile function closes the INF file opened by a call to SetupOpenInfFile and any INF
files appended to it by SetupOpenAppendInfFile.

VOID SetupCloseInfFile(
        HINF InfHandle // handle to the INF file to close
     );

Parameters
InfHandle

Handle to the INF file to close.

See Also
SetupOpenInfFile, SetupOpenAppendInfFile

SetupCommitFileQueue       

   

[New - Windows NT]

The SetupCommitFileQueue function performs file operations enqueued on a setup file queue.

BOOL SetupCommitFileQueue(
        HWND Owner, // optional; parent window
        HSPFILEQ QueueHandle, // handle to the file queue
        PSP_FILE_CALLBACK MsgHandler, // callback routine to use
        PVOID Context // passed to callback routine
     );

Parameters
Owner

This optional parameter supplies the handle of a window to use as the parent of any progress dialog
boxes.

QueueHandle
Supplies a handle to a setup file queue, as returned by SetupOpenFileQueue.

MsgHandler
Supplies a callback routine to be notified of various significant events in the queue processing. For
more information, see "Default Queue Callback Routine."

Context
Supplies a value that is passed to the callback function supplied by the MsgHandler parameter. If the
default callback routine has been specified as MsgHandler, this context must be the context returned
from SetupInitDefaultQueueCallback or SetupInitDefaultQueueCallbackEx.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
The callback routine specified in MsgHandler should be compatible with the the parameters that
SetupCommitFileQueue passed to it during a queue commit.

If Unicode is defined in your callback application, and you specifiy MsgHandler as the default queue
callback routine, the callback routine will expect Unicode parameters. Otherwise, the default queue
callback routine will expect ANSI parameters.

See Also
SetupCloseFileQueue

SetupCopyError       

   

[New - Windows NT]

The SetupCopyError function generates a dialog box to notify the user of a copy file error.

UINT SetupCopyError(
        HWND hwndParent, // parent window for this dialog box
        PCTSTR DialogTitle, // optional, title for this dialog box
        PCTSTR DiskName, // optional, name of disk to insert
        PCTSTR PathToSource, // failed source path
        PCTSTR SourceFile, // source file of copy error
        PCTSTR TargetPathFile, // optional, target file of copy error
        UINT Win32ErrorCode, // error information
        DWORD Style, // dialog box formatting and display
        PTSTR PathBuffer, // optional, receives new path info
        DWORD PathBufferSize, // size of supplied buffer
        PDWORD PathRequiredSize // optional, buffer size needed
     );

Parameters
hwndParent

Handle to the parent window for this dialog box.
DialogTitle

This optional parameter points to a null-terminated string specifying the dialog box title. If this
parameter is NULL, the default title of "Copy Error" (localized to the system language) is used.

DiskName
This optional parameter points to a null-terminated string specifying the name of the disk to insert. If
this parameter is NULL, the default name "(Unknown)" (localized to the system language) is used.

PathToSource
Pointer to the path component of the source file on which the operation failed; for example, F:\mips.

SourceFile
Pointer to a null-terminated string specifying the filename part of the file on which the operation failed.
This filename is displayed if the user clicks on the Details or Browse buttons. The SetupCopyError
function looks for the file using its compressed form names; therefore, you can pass cmd.exe and not
worry that the file actually exists as cmd.ex_ on the source media.

TargetPathFile
This optional parameter points to a null-terminated string that specifies the full path of the target file
for rename and copy operations. If TargetPathFile is not specified, "(Unknown)" (localized to the
system language) is used.

Win32ErrorCode
The Win32 error code encountered during the file operation. For information about Win32 error codes,
see the WINERROR.H file included with the Win32 SDK.

Style
Specifies flags that control display formatting and behavior of the dialog box. This parameter can be
one of the following flags:
IDF_NOBROWSE

Do not display the browse option.
IDF_NOSKIP

Do not display the skip file option.
IDF_NODETAILS

Do not display the details option. If this flag is set, the TargetPathFile and Win32ErrorCode
parameters can be omitted.

IDF_NOCOMPRESSED
Do not check for compressed versions of the source file.

IDF_OEMDISK
The operation source is a disk provided by a hardware manufacturer.

IDF_NOBEEP
Prevent the dialog box from beeping to get the user's attention when it first appears.

IDF_NOFOREGROUND
Prevent the dialog box from becoming the foreground window.

IDF_WARNIFSKIP
Warn the user that skipping a file can affect the installation.

PathBuffer
This optional parameter points to a caller-supplied variable in which this function returns the path (not
including the filename) of the location specified by the user through the dialog box.

PathBufferSize
Specifies the size of the buffer pointed to by PathBuffer. It should be at least MAX_PATH in length.

PathRequiredSize
This optional parameter points to a caller-supplied variable in which this function returns the required
buffer size.

Return Values
The function returns one of the following values:

DPROMPT_SUCCESS
The requested disk/file is present and accessible. If PathBuffer was specified, it contains the path
to the file (not including the filename).

DPROMPT_CANCEL
The user clicked on the Cancel button.

DPROMPT_SKIPFILE
The user clicked on the Skip File button.

DPROMPT_BUFFERTOOSMALL
The provided PathBuffer is too small. Check PathRequiredSize for the actual size needed.

DPROMPT_OUTOFMEMORY
There is insufficient memory to process the request.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize and RequiredSize are specified
in number of characters. This number includes the null terminator. For the ANSI version of this function,
the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is NO_ERROR. Otherwise, the return value is one of the values
specified preceding.

To avoid insufficient buffer errors, ReturnBuffer should be at least MAX_PATH.

See Also
SetupDeleteError, SetupPromptForDisk, SetupRenameError

SetupDecompressOrCopyFile       

   

[New - Windows NT]

The SetupDecompressOrCopyFile function copies a file, decompressing it if necessary.

DWORD SetupDecompressOrCopyFile(
        PCTSTR SourceFileName, // filename of the source file
        PCTSTR TargetFileName, // filename after copy operation
        PUINT CompressionType // optional, source file compression
     );

Parameters
SourceFileName

Filename of the file to copy. If CompressionType is not specified and the
SetupDecompressOrCopyFile function does not find the file specified in SourceFileName, the
function searches for the file with up to two alternate, "compressed-form" names. For example, if the
file is F:\mips\cmd.exe and it is not found, the function searches for F:\mips\cmd.ex_ and, if that is not
found, F:\mips\cmd.ex$ is searched for. If CompressionType is specified, no additional processing is
performed on the filename; the file must exist exactly as specified or the function fails.

TargetFileName
Supplies the exact name of the target file that will be created by decompressing or copying the source
file.

CompressionType
This optional parameter points to the compression type used on the source file. You can determine
the compression type by calling SetupGetFileCompressionInfo. If this value is
FILE_COMPRESSION_NONE, the file is copied (not decompressed) regardless of any compression
in use on the source. If CompressionType is not specified, this routine determines the compression
type automatically.

Return Values
The SetupDecompressOrCopyFile function returns a Win32 error code that indicates the outcome of
the operation. For more information about Win32 error codes, see the WINERROR.H header file included
with the Win32 SDK.

See Also
SetupGetFileCompressionInfo

SetupDefaultQueueCallback       

   

[New - Windows NT]

The SetupDefaultQueueCallback function is the default queue callback routine included with the Setup
API. You can use it to process notifications sent by the SetupCommitFileQueue function.

UINT SetupDefaultQueueCallback(
        PVOID Context, // context used by the default callback routine
        UINT Notification, // queue notification
        UINT Param1, // additional notification information
        UINT Param2 // additional notification information
     );

Parameters
Context

Supplies a pointer to the context initialized by the SetupInitDefaultQueueCallback or
SetupInitDefaultQueueCallbackEx functions.

Notification
Supplies the notification of a queue action. This parameter can be one of the following values:

SPFILENOTIFY_STARTQUEUE Started enqueued file
operations.

SPFILENOTIFY_ENDQUEUE Finished enqueued file
operations.

SPFILENOTIFY_STARTSUBQUEU
E

Started a copy, rename, or
delete subqueue.

SPFILENOTIFY_ENDSUBQUEUE Finished a copy, rename, or
delete subqueue.

SPFILENOTIFY_STARTRENAME Started a rename operation.
SPFILENOTIFY_ENDRENAME Finished a rename operation.
SPFILENOTIFY_RENAMEERROR Encountered an error while

renaming a file.
SPFILENOTIFY_STARTDELETE Started a delete operation.
SPFILENOTIFY_ENDDELETE Finished a delete operation.
SPFILENOTIFY_DELETEERROR Encountered an error while

deleting a file.
SPFILENOTIFY_STARTCOPY Started a copy operation.
SPFILENOTIFY_ENDCOPY Finished a copy operation.
SPFILENOTIFY_COPYERROR Encountered an error while

copying a file.
SPFILENOTIFY_NEEDMEDIA New media is required.
SPFILENOTIFY_LANGMISMATCH Existing target file is in a

different language than the
source.

SPFILENOTIFY_TARGETEXISTS Target file exists.
SPFILENOTIFY_TARGETNEWER Existing target file is newer

than source.

Param1
Specifies additional message information. The content of this parameter depends on the value of the
Notification parameter.

Param2
Specifies additional message information. The content of this parameter depends on the value of the
Notification parameter.

Return Values
Returns an unsigned integer to SetupCommitFileQueue that can be the following values.

File Directive Description
FILEOP_ABORT Abort the operation.
FILEOP_DOIT Perform the file operation.
FILEOP_SKIP Skip the operation.
FILEOP_RETRY Retry the operation.
FILEOP_NEWPATH Get a new path for the operation.

Remarks
The SetupDefaultQueueCallback function is usually only called explicitly by a custom queue callback
routine. The custom callback handles a subset of the queue commit notifications and calls the
SetupDefaultQueueCallback function to handle the rest of the notifications.

For more information see, Queue Notifications.

See Also
SetupCommitFileQueue

SetupDeleteError       

   

[New - Windows NT]

The SetupDeleteError function generates a dialog box that informs the user of a delete error.

UINT SetupDeleteError(
        HWND hwndParent, // parent window for this dialog box
        PCTSTR DialogTitle, // optional, title for this dialog box
        PCTSTR File, // file that caused the delete error
        UINT Win32ErrorCode, // specifies the error that occurred
        DWORD Style // specifies formatting for the dialog box
     );

Parameters
hwndParent

Handle to the parent window for this dialog box.
DialogTitle

This optional parameter points to a null-terminated string specifying the error dialog box title. If this
parameter is NULL, the default title of "Delete Error" (localized) is used.

File
Pointer to a null-terminated string specifying the full path of the file on which the delete operation
failed.

Win32ErrorCode
The Win32 error code encountered during the file operation.

Style
Specifies flags that control display formatting and behavior of the dialog box. This parameter can be
one of the following flags:
IDF_NOBEEP

Prevent the dialog box from beeping to get the user's attention when it first appears.
IDF_NOFOREGROUND

Prevent the dialog box from becoming the foreground window.

Return Values
This function returns one of the following values:

DPROMPT_SUCCESS
The user retried the operation and it was successful.

DPROMPT_CANCEL
The user clicked the Cancel button.

DPROMPT_SKIPFILE
The user clicked the Skip File button.

DPROMPT_OUTOFMEMORY
There is insufficient memory to process the request.

See Also
SetupCopyError, SetupPromptForDisk, SetupRenameError

SetupFindFirstLine       

   

[New - Windows NT]

The SetupFindFirstLine function locates a line in the specified section of an INF file. If the Key
parameter is NULL, SetupFindFirstLine returns the first line of the section.

BOOL SetupFindFirstLine(
        HINF InfHandle, // handle to an INF file
        PCTSTR Section, // section in which to find a line
        PCTSTR Key, // optional, key to search for
        PINFCONTEXT Context // context of the found line
     );

Parameters
InfHandle

Handle to the INF file to query.
Section

Pointer to a null-terminated string specifying the section of the INF file(s) to search in.
Key

This optional parameter points to a null-terminated string specifying the key to search for within the
section. If Key is NULL, the first line in the section is returned.

Context
Pointer to a structure in which this function returns the context information used internally by the INF
handle. Applications must not overwrite values in this structure.

Return Values
If the function could not find a line, the return value is FALSE.

Remarks
If the InfHandle parameter references multiple INF files that have been appended together using
SetupOpenAppendInfFile, the SetupFindFirstLine function searches across the specified section in all
of the files referenced by the specified HINF.

See Also
SetupFindNextLine, SetupFindNextMatchLine, SetupGetLineByIndex

SetupFindNextLine       

   

[New - Windows NT]

The SetupFindNextLine returns the location of the next line in an INF file section relative to
ContextIn.Line.

BOOL SetupFindNextLine(
        PINFCONTEXT ContextIn, // starting context in an INF file
        PINFCONTEXT ContextOut // context of the next line
     );

Parameters
ContextIn

Pointer to the INF file context retrieved by a call to the SetupFindFirstLine function.
ContextOut

Pointer to a caller-supplied variable in which this function returns the context of the found line.
ContextOut can point to ContextIn if the caller wishes.

Return Values
If this function finds the next line, the return value is TRUE. Otherwise, the return value is FALSE.

Remarks
If ContextIn.Inf references multiple INF files that have been appended together using
SetupOpenAppendInfFile, this function searches across the specified section in all files referenced by
the HINF to locate the next line.

See Also
SetupFindFirstLine, SetupFindNextMatchLine, SetupGetLineByIndex

SetupFindNextMatchLine       

   

[New - Windows NT]

The SetupFindNextMatchLine function returns the location of the next line in an INF file relative to
ContextIn.Line that matches a specified key.

BOOL SetupFindNextMatchLine(
        PINFCONTEXT ContextIn, // starting context in an INF file
        PCTSTR Key, // optional, key to match
        PINFCONTEXT ContextOut // context of the the found line
     );

Parameters
ContextIn

Specifies a pointer to an INF file context, as retrieved by a call to the SetupFindFirstLine function.
Key

If this optional parameter is specified, it supplies a key to match. If Key is not specified, the
SetupFindNextMatchLine    function is equivalent to the SetupFindNextLine function.

ContextOut
Pointer to a caller-supplied variable in which this function returns the context of the found line.
ContextOut can point to ContextIn if the caller wishes.

Return Values
The function returns TRUE if it finds a matching line. Otherwise, the return value is FALSE.

Remarks
If ContextIn.Inf references multiple INF files that have been appended together using
SetupOpenAppendInfFile, the SetupFindNextMatchLine function searches across the specified
section in all files referenced by the HINF to locate the next matching line.

See Also
SetupFindFirstLine, SetupFindNextLine, SetupGetLineByIndex

SetupFreeSourceList       

   

[New - Windows NT]

The SetupFreeSourceList function frees the system resources allocated to a source list.

BOOL SetupFreeSourceList(
        PCTSTR **List, // an array of sources to free
        UINT Count // the number of sources in the array
     );

Parameters
List

Specifies a pointer to an array of sources from SetupQuerySourceList. When the function returns,
this pointer is set to NULL.

Count
Specifies the number of sources in the list.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupCancelTemporarySourceList, SetupSetSourceList

SetupGetBinaryField       

   

[New - Windows NT]

The SetupGetBinaryField function retrieves binary data from a line in an INF file section, from the
specified field to the end of the line.

BOOL SetupGetBinaryField(
        PINFCONTEXT Context, // context of a line in an INF file
        DWORD FieldIndex, // index of the starting field
        BYTE * ReturnBuffer, // optional, receives the fields
        DWORD ReturnBufferSize, // size of the supplied buffer
        LPDWORD RequiredSize // optional, buffer size needed
     );

Parameters
Context

Supplies INF context for the line.
FieldIndex

The 1-based index of the starting field within the specified line from which the binary data should be
retrieved. The binary data is built from each field, starting at this point to the end of the line. Each field
corresponds to 1 byte and is in hexadecimal notation. A FieldIndex of 0 is not valid with this function.

ReturnBuffer
This optional parameter points to a caller-supplied buffer that receives the binary data.

ReturnBufferSize
Specifies the size of the buffer pointed to by ReturnBuffer.

RequiredSize
This optional parameter points to a caller-supplied variable that receives the required size for the
buffer pointed to ReturnBuffer. If the size needed is larger than the value specified by
ReturnBufferSize, the function fails and a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

GetLastError returns ERROR_INVALID_DATA if a field that SetupGetBinaryField retrieves is not a valid
hexadecimal number in the range 0-FF.

Remarks
To better understand how this function works, consider the following line from an INF file.

X=34,FF,00,13

If SetupGetBinaryField was called on the preceding line, the binary values 34, FF, 00, and 13 would be
put into the buffer specified by ReturnBuffer.

For the Unicode version of this function, the buffer sizes ReturnBufferSize and RequiredSize are specified
in number of characters. This number includes the null terminator. For the ANSI version of this function,

the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

See Also
SetupGetIntField, SetupGetMultiSzField, SetupGetStringField

SetupGetFieldCount       

   

[New - Windows NT]

The SetupGetFieldCount function retrieves the number of fields in the specified line in an INF file.

DWORD SetupGetFieldCount(
        PINFCONTEXT Context //specifies the line to count fields in
     );

Parameters
Context

Pointer to the context for a line in an INF file.

Return Values
This function returns the number of fields on the line. If Context is invalid, 0 is returned.

See Also
SetupGetLineCount

SetupGetFileCompressionInfo       

   

[New - Windows NT]

The SetupGetFileCompressionInfo function examines a physical file to determine if it is compressed
and gets its full path, size, and the size of the uncompressed target file.

DWORD SetupGetFileCompressionInfo(
        PCTSTR SourceFileName, // file to investigate
        PTSTR *ActualSourceFileName, // receives compressed name
        PDWORD SourceFileSize, // receives compressed size
        PDWORD TargetFileSize, // receives uncompressed size
        PUINT CompressionType // receives compression type
     );

Parameters
SourceFileName

Filename of the file about which information is required. If the file is not found on the source media
exactly as named, the file is searched for with up to two alternate "compressed-form" names. For
example, if the file is F:\mips\cmd.exe and it is not found, F:\mpis\cmd.ex_ is searched for and, if that
is not found, F:\mips\cmd.ex$ is searched for.

ActualSourceFileName
Supplies a pointer to a caller-supplied variable in which this function returns the full path of the file
that was actually located. The caller can free the pointer with a call to LocalFree. The path is valid
only if the function returns NO_ERROR.

SourceFileSize
Supplies a pointer to a caller-supplied variable in which this function returns the size of the file in its
current form which is the current size of the filenamed by ActualSourceFileName. The size is
determined by examining the source file; it is not retrieved from an INF file. The source file size is
valid only if the function returns NO_ERROR.

TargetFileSize
Supplies a pointer to a caller-supplied variable in which this function returns the size the file will
occupy when it is uncompressed or copied. If the file is not compressed, this value will be the same
as SourceFileSize. The size is determined by examining the file; it is not retrieved from an INF file.
The target file size is valid only if the function returns NO_ERROR.

CompressionType
Supplies a pointer to a caller-supplied variable in which this function returns a value indicating the
type of compression used on ActualSourceFileName. The compression type is valid only if the
function returns NO_ERROR. The value can be one of the following flags:
FILE_COMPRESSION_NONE

The source file is not compressed with a recognized compression algorithm.
FILE_COMPRESSION_WINLZA

The source file is compressed with winlza (using compress.exe without the -z switch or LZXxx
Win32 functions).

FILE_COMPRESSION_MSZIP
The source file is compressed with mszip (using compress.exe with the -z switch).

Return Values
The function returns a Win32 error code that indicates the outcome of the file search. The error code can

be one of the following:

ERROR_FILE_NOT_FOUND
The file cannot be found.

NO_ERROR
The file was located and the output parameters were filled in.

Remarks
Because SetupGetFileCompressionInfo determines the compression by referencing the physical file,
your setup application should ensure that the file is present before calling
SetupGetFileCompressionInfo.

See Also
SetupDecompressOrCopyFile

SetupGetInfFileList       

   

[New - Windows NT]

The SetupGetInfFileList function returns a list of INF files located in a caller-specified directory to a call-
supplied buffer.

BOOL SetupGetInfFileList(
        PCTSTR DirectoryPath, // optional, the directory path
        DWORD InfStyle, // style of the INF file
        PTSTR ReturnBuffer, // optional, receives the file list
        DWORD ReturnBufferSize, // size of the supplied buffer
        PDWORD RequiredSize // optional, buffer size needed
     );

Parameters
DirectoryPath

An optional parameter that points to a null-terminated string containing the path of the directory in
which to search. If this value is NULL, the %windir%\inf directory is used.

InfStyle
Specifies the style of INF file to search for. May be a combination of the following flags.
INF_STYLE_OLDNT

Windows NT 3.x script-based INF files.
INF_STYLE_WIN4

Windows 95- or Windows NT 4.0-style INF files.
ReturnBuffer

If not NULL, points to a caller-supplied buffer in which this function returns the list of all INF files of the
desired style(s) that were found in the specified subdirectory. Filenames are null-terminated, with an
extra null at the end of the list. The filenames do not include the path.

ReturnBufferSize
Specifies the size of the buffer pointed to by the ReturnBuffer parameter. If ReturnBuffer is not
specified, ReturnBufferSize is ignored.

RequiredSize
If not NULL, points to a caller-supplied variable in which this function returns the required size for the
buffer pointed to by the ReturnBuffer parameter. If ReturnBuffer is specified and the size needed is
larger than ReturnBufferSize, the function fails and a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize, and RequiredSize are
specified in number of characters. This number includes the null terminator. For the ANSI version of this
function, the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function

succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

If multiple INF file styles are returned by this function, the style of a particular INF file can be determined
by calling the SetupGetInfInformation function.

See Also
SetupGetInfInformation

SetupGetInflnformation       

   

[New - Windows NT]

The SetUpGetInfInformation function returns the SP_INF_INFORMATION structure for the specified
INF file to a caller-supplied buffer.

BOOL SetupGetInflnformation(
        LPCVOID InfSpec, // handle or filename of the INF file
        DWORD SearchControl, // how to search for the INF file
        PSP_INF_INFORMATION Return Buffer, // optional, receives the INF info
        DWORD ReturnBufferSize, // size of the supplied buffer
        PDWORD RequiredSize // optional, buffer size needed
     );

Parameters
InfSpec

A handle or a filename for an INF file, depending on the value of SearchControl.
SearchControl

This parameter can be one of the following constants:
INFINFO_INF_SPEC_IS_HINF

InfSpec is an INF handle. A single INF handle may reference multiple INF files if they have been
append-loaded together. If it does, the structure returned by this function contains multiple sets of
information.

INFINFO_INF_NAME_IS_ABSOLUTE
The string specified for InfSpec is a full path. No further processing is performed on InfSpec.

INFINFO_DEFAULT_SEARCH
Search the default locations for the INF file specified for InfSpec, which is assumed to be a
filename only. The default locations are %windir%\inf, followed by %windir%\system32.

INFINFO_REVERSE_DEFAULT_SEARCH
Same as INFINFO_DEFAULT_SEARCH, except the default locations are searched in reverse
order.

INFINFO_INF_PATH_LIST_SEARCH
Search for the INF in each of the directories listed in the DevicePath value entry under:

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

ReturnBuffer
If not NULL, ReturnBuffer points to a caller-supplied buffer in which this function returns the
SP_INF_INFORMATION structure.

ReturnBufferSize
Size of the ReturnBuffer.

RequiredSize
If not NULL, points to a caller-supplied variable in which this function returns the required size for the
buffer pointed to by ReturnBuffer. If ReturnBuffer is specified and the size needed is larger than
ReturnBufferSize, the function fails and a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

If the INF file could not be located, the function returns FALSE and a subsequent call to GetLastError
returns ERROR_FILE_NOT_FOUND.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize and RequiredSize are specified
in number of characters. This number includes the null terminator. For the ANSI version of this function,
the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

See Also
SetupQueryInfFileInformation, SetupQueryInfVersionInformation

SetupGetIntField       

   

[New - Windows NT]

The SetupGetIntField function retrieves an integer value from the specified field of a line in an INF file.

BOOL SetupGetIntField(
        PINFCONTEXT Context, // context of a line in an INF file
        DWORD FieldIndex, // index of an integer field in the line
        PINT IntegerValue // receives the retreived integer field
     );

Parameters
Context

Pointer to the context for a line in an INF file.
FieldIndex

The 1-based index of the field within the specified line from which the integer should be retrieved.
A FieldIndex of 0 can be used to retrieve an integer key (For example, consider the following INF line,
431 = 1, 2, 4. The value 431 would be put into the variable pointed at by IntegerValue if
SetupGetIntField was called with a FieldIndex of 0).

Integer Value
Pointer to a caller-supplied variable that receives the integer. If the field is not an integer, the function
fails and a call to GetLastError returns ERROR_INVALID_DATA.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
The integer field may start with a positive (+) or negative (-) sign. It will be interpreted as a decimal
number, unless it is prefixed in the file with 0x or 0X, in which case it is hexadecimal.

See Also
SetupGetBinaryField, SetupGetMultiSzField, SetupGetStringField   

SetupGetLineByIndex       

   

[New - Windows NT]

The SetupGetLineByIndex function locates a line by its index value in the specified section in the INF
file.

BOOL SetupGetLineByIndex(
        HINF InfHandle, // handle to the INF file
        PCTSTR Section, // section that contains the line
        DWORD Index, // the index of the line to find
        PINFCONTEXT Context // context that specifies the found line
     );

Parameters
InfHandle

Handle of the INF file.
Section

Pointer to a null-terminated string specifying the section of the INF file to search.
Index

Specifies the index of the line to be located. The total number of lines in a particular section can be
found with a call to SetupGetLineCount.

Context
Points to a caller-supplied variable in which the function returns the context information for the found
line.

Return Values
If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks
If InfHandle references multiple INF files that have been appended together using
SetupOpenAppendInfFile, this function searches across the specified section in all files referenced by
the HINF to locate the indexed line.

See Also
SetupFindFirstLine, SetupFindNextLine, SetupFindNextMatchLine

SetupGetLineCount       

   

[New - Windows NT]

The SetupGetLineCount function returns the number of lines in a specified section of an INF file.

LONG SetupGetLineCount(
        HINF InfHandle, // handle to the INF file
        PCTSTR Section // the section in which to count lines
     );

Parameters
InfHandle

Handle of the INF file.
Section

Pointer to a null-terminated string that specifies the section in which you want to count the lines.

Return Values
If InfHandle references multiple INF files that have been appended together using
SetupOpenAppendInfFile, this function returns the sum of the lines in all the INF files containing the
specified section. A return value of 0 specifies an empty section. If the section does not exist, the function
returns -1.

SetupGetLineText       

   

[New - Windows NT]

The SetupGetLineText function returns the contents of a line in an INF file in a compact form. The line to
retrieve can be specified by an INFCONTEXT structure returned from a SetupFindLineXXX function, or
by explicitly passing in the INF handle, section, and key of the desired line.

BOOL SetupGetLineText(
        PINFCONTEXT Context, // optional, context of an INF file
        HINF InfHandle, // optional, handle to an INF file
        PCTSTR Section, // optional, section in an INF file
        PCTSTR Key, // optional, key to look for
        PTSTR ReturnBuffer, // optional, receives the line text
        DWORD ReturnBufferSize, // size of the supplied buffer
        PDWORD RequiredSize // optional, buffer size needed
     );

Parameters
Context

Supplies context for a line in an INF file whose text is to be retrieved. If Context is NULL, InfHandle,
Section, and Key must be specified.

InfHandle
Handle of the INF file to query. This parameter is used only if Context is NULL.

Section
Pointer to a null-terminated string that specifies the section containing the key name of the line whose
text is to be retrieved. This parameter is used only if Context is NULL.

Key
Pointer to a null-terminated string containing the key name whose associated string is to be retrieved.
This parameter is used only if Context is NULL.

ReturnBuffer
If not NULL, points to a caller-supplied buffer in which this function returns the contents of the line.

ReturnBufferSize
Specifies the size of the buffer pointed to by the ReturnBuffer parameter.

RequiredSize
If not NULL, points to a caller-supplied variable in which this function returns the required size for the
buffer pointed to by the ReturnBuffer parameter. If ReturnBuffer is specified and the size needed is
larger than the value specified in the ReturnBufferSize parameter, the function fails and does not
store data in the buffer.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize and RequiredSize are specified
in number of characters. This number includes the null terminator. For the ANSI version of this function,
the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

This function returns the contents of a line in a compact format. All extraneous white space is removed
and multi-line values are converted into a single contiguous string. For example, this line:

HKLM, , PointerClass0, 1 \
; This is a comment
01, 02, 03

would be returned as:

HKLM,,PointerClass0,1,01,02,03

See Also

SetupFindFirstLine, SetupFindNextLine, SetupFindNextMatchLine, SetupGetLineByIndex

SetupGetMultiSzField       

   

[New - Windows NT]

The SetupGetMultiSzField function retrieves multiple strings stored in a line of an INF file, from the
specified field to the end of the line.

BOOL SetupGetMultiSzField(
        PINFCONTEXT Context, // context of a line in an INF file
        DWORD FieldIndex, // index of the starting field
        PTSTR ReturnBuffer, // optional, receives the fields
        DWORD ReturnBufferSize, // size of the supplied buffer
        LPDWORD RequiredSize // optional, buffer size needed
     );

Parameters
Context

Pointer to the context for a line in an INF file.
FieldIndex

The 1-based index of the starting field within the specified line from which the strings should be
retrieved. The string list is built from each field starting at this point to the end of the line. A FieldIndex
of 0 is not valid with this function.

ReturnBuffer
This optional parameter points to a caller-supplied character buffer that receives the strings. Each
string is null-terminated, with an extra null at the end of the string list.

ReturnBufferSize
Specifies the size of the buffer pointed to by ReturnBuffer.

RequiredSize
This optional parameter points to a caller-supplied variable that receives the size required for the
buffer pointed to by ReturnBuffer. If the size needed is larger than the value specified by
ReturnBufferSize, the function fails and a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize and RequiredSize are specified
in number of characters. This number includes the null terminator. For the ANSI version of this function,
the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to

an insufficient buffer size.

See Also
SetupGetBinaryField, SetupGetIntField, SetupGetStringField

SetupGetSourceFileLocation       

   

[New - Windows NT]

The SetupGetSourceFileLocation function retrieves the location of a source file listed in an INF file.

BOOL SetupGetSourceFileLocation(
        HINF InfHandle, // handle of an INF file
        PINFCONTEXT InfContext, // optional, context of an INF file
        PCTSTR FileName, // optional, source file to locate
        PUINT SourceId, // receives the source media ID
        PTSTR ReturnBuffer, // optional, receives the location
        DWORD ReturnBufferSize, // size of the supplied buffer
        PDWORD Required Size // optional, buffer size needed
     );

Parameters
InfHandle

Handle of the INF file that contains the SourceDisksNames and SourceDisksFiles sections. If
platform-specific sections exist for the user's system (for example, SourceDisksNames.mips and
SourceDisksFiles.mips), the platform-specific section will be used.

InfContext
This optional parameter points to the context of a line in a Copy Files section for which the full source
path is to be retrieved. If this parameter is NULL, FileName is searched for in the SourceDisksFiles
section of the INF file specified by InfHandle.

FileName
This optional parameter points to a null-terminated string containing the filename (no path) for which
to return the full source location. Either this parameter or InfContext must be specified.

SourceId
Points to a caller-supplied variable that receives the source identifier of the media where the file is
located from the SourceDisksNames section of the INF file.

ReturnBuffer
This optional parameter points to a caller-supplied buffer to receive the relative source path. The
source path does not include the filename itself, nor does it include a drive letter/network share name.
The path does not start or end with a backslash (\), so the empty string specifies the root directory.

ReturnBufferSize
Specifies the size of the buffer pointed to by ReturnBuffer.

RequiredSize
This optional parameter points to a caller-supplied variable that receives the required size for the
buffer pointed to by the ReturnBuffer parameter. If the required size is larger than the value specified
by ReturnBufferSize, the function fails and GetLastError returns ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize, and ReturnBufferSize are

specified in number of characters. This number includes the null terminator. For the ANSI version of this
function, the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

See Also
SetupGetSourceInfo, SetupGetSourceFileSize

SetupGetSourceFileSize       

   

[New - Windows NT]

The SetupGetSourceFileSize function reads the uncompressed size of a source file listed in an INF file.

BOOL SetupGetSourceFileSize(
        HINF InfHandle, // handle of the INF file
        PINFCONTEXT InfContext, // optional, context of the INF file
        PCTSTR FileName, // optional, filename to find size of
        PCTSTR Section, //optional, section in an INF file
        PDWORD FileSize, // receives the size of the file
        UINT RoundingFactor // optional, round to a muliple of this
     );

Parameters
InfHandle

Handle of the loaded INF file that contains the SourceDisksNames and SourceDisksFiles sections.
If platform-specific sections exist for the user's system (for example, SourceDisksNames.mips and
SourceDisksFiles.mips), the platform-specific section will be used.

InfContext
This optional parameter points to a context for a line in a Copy Files section for which the size is to
be retrieved. If InfContext is NULL, the FileName parameter is used.

FileName
This optional parameter points to a null-terminated string containing the filename (no path) for which
to return the size. If this parameter is NULL as well as InfContext, then the Section parameter is used.

Section
This optional parameter points to a null-terminated string containing the name of a Copy Files
section. If this parameter is specified, the total size of all files listed in the section is computed.

FileSize
Pointer to a caller-supplied variable that receives the size, in bytes, of the specified file(s).

RoundingFactor
This optional parameter supplies a value for rounding file sizes. All file sizes are rounded up to a
multiple of this number before being added to the total size. Rounding is useful for more exact
determinations of the space that a file will occupy on a given volume, because it allows the caller to
have file sizes rounded up to a multiple of the cluster size. Rounding does not occur unless
RoundingFactor is specified.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
One and only one of the optional parameters, InfContext, FileName, and Section, must be specified.

See Also
SetupGetSourceFileLocation

SetupGetSourceInfo       

   

[New - Windows NT]

The SetupGetSourceInfo function retrieves the path, tag file, or media description for a source listed in
an INF file.

BOOL SetupGetSourceInfo(
        HINF InfHandle, // handle to the INF file
        UINT SourceId, // ID of the source media
        UINT InfoDesired, // information to retrieve
        PTSTR ReturnBuffer, // optional, receives the info
        DWORD ReturnBufferSize, // size of the supplied buffer
        LPDWORD RequiredSize // optional, buffer size needed
     );

Parameters
InfHandle

Handle of an open INF file that contains a SourceDisksNames section. If platform-specific sections
exist for the user's system (for example, SourceDisksNames.mips), the platform-specific section will
be used.

SourceId
Identifier for a source media. This value is used to search by key in the SourceDisksNames section.

InfoDesired
A value indicating what information is desired. Only one value may be specified per function call, and
they cannot be combined. The following types of information can be retrieved from a
SourceDisksNames section:
SRCINFO_PATH

The path specified for the source. This is not a full path, but the path relative to the installation root.
SRCINFO_TAGFILE

The tag file that identifies the source media, or if cabinets are used, the name of the cabinet file.
SRCINFO_DESCRIPTION

A description for the media.
ReturnBuffer

This optional parameter points to a caller-supplied buffer to receive the retrieved information. Path
returns are guaranteed not to end with \.

ReturnBufferSize
Specifies the size of the buffer pointed to by ReturnBuffer.

RequiredSize
This optional parameter points to a caller-supplied variable that receives the required size for the
buffer specified by ReturnBuffer. If ReturnBuffer is specified and the actual size needed is larger than
the value specified by ReturnBufferSize, the function fails and a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize and RequiredSize are specified
in number of characters. This number includes the null terminator. For the ANSI version of this function,
the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

See Also
SetupGetSourceFileLocation, SetupGetSourceFileSize, SetupGetTargetPath

SetupGetStringField       

   

[New - Windows NT]

The SetupGetStringField function retrieves a string from the specified field of a line in an INF file.

BOOL SetupGetStringField(
        PINFCONTEXT Context, // context of the INF file
        DWORD FieldIndex, // index of the field to get
        PTSTR ReturnBuffer, // optional, receives the field
        DWORD ReturnBufferSize, // size of the provided buffer
        PDWORD RequiredSize // optional, buffer size needed
     );

Parameters
Context

Pointer to the context for a line in an INF file.
FieldIndex

The 1-based index of the field within the specified line from which the string should be retrieved. Use
a FieldIndex of 0 to retrieve a string key, if present.

ReturnBuffer
This optional parameter points to a caller-supplied buffer to which this function returns the string.

ReturnBufferSize
The size of the buffer pointed to by ReturnBuffer.

RequiredSize
This optional parameter points to a caller-supplied variable to which SetupGetStringField returns the
required size for the buffer pointed to by the ReturnBuffer parameter. If ReturnBuffer is specified and
the actual size needed is larger than the value specified by ReturnBufferSize, the function fails and
does not store the string in the buffer. In this case, a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize, and ReturnBufferSize are
specified in number of characters. This number includes the null terminator. For the ANSI version of this
function, the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

See Also
SetupGetIntField, SetupGetBinaryField, SetupGetMultiSzField

SetupGetTargetPath       

   

[New - Windows NT]

The SetupGetTargetPath function determines the target directory for a file list section. The file list section
can be a Copy Files section, a Delete Files section, or a Rename Files section. All the files in the
section must be in a single directory that is listed in a DestinationDirs section of the INF file.

BOOL SetupGetTargetPath(
        HINF InfHandle, // handle of the INF file
        PINFCONTEXT InfContext, // optional, context of the INF file
        PCTSTR Section, // optional, section in the INF file
        PTSTR ReturnBuffer, // optional, receives the path info
        DWORD ReturnBufferSize, // size of the supplied buffer
        PDWORD RequiredSize // optional, buffer size needed
     );

Parameters
InfHandle

Handle of the load INF file that contains a DestinationDirs section.
InfContext

This optional parameter points to a INF context that specifies a line in a file list section whose
destination directory is to be retrieved. If InfContext is NULL, then the Section parameter is used.

Section
This optional parameter specifies the name of a section of the INF file whose handle is InfHandle.
SetupGetTargetPath retrieves the target directory for this section. The Section parameter is ignored
if InfContext is specified. If neither InfContext nor Section is specified, the function retrieves the
default target path from the INF file.

ReturnBuffer
This optional parameter points to a caller-supplied buffer to receive the fully qualified Win32 target
path. The path is guaranteed not to end with \.

ReturnBufferSize
Specifies the size of the buffer pointed to by ReturnBuffer.

RequiredSize
This optional parameter points to a caller-supplied variable that receives the required size for the
buffer pointed to by ReturnBuffer. If the actual size needed is larger than the value specified by
ReturnBufferSize, the function fails and a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize and RequiredSize are specified
in number of characters. This number includes the null terminator. For the ANSI version of this function,
the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the

buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

See Also
SetupGetSourceFileLocation, SetupGetSourceInfo, SetupGetSourceFileSize

SetupInitDefaultQueueCallback       

   

[New - Windows NT]

The SetupInitDefaultQueueCallback function initializes the context used by the default queue callback
routine included with the Setup API.

PVOID SetupInitDefaultQueueCallback(
        HWND OwnerWindow // parent window of any dialog boxes created by the callback routine
     );

Parameters
OwnerWindow

Supplies the handle of the window to use as the parent of any dialog boxes generated by the default
callback routine.

Return Values
A pointer to the context used by the default queue callback routine.

See Also
SetupDefaultQueueCallback, SetupInitDefaultQueueCallbackEx

SetupInitDefaultQueueCallbackEx     

   

[New - Windows NT]

The SetupInitDefaultQueueCallback function initializes the context used by the default queue callback
routine included with the Setup API in the same manner as SetupInitDefaultQueueCallback, except that
an additional window is provided to the callback function to accept progress messages.

PVOID SetupInitDefaultQueueCallbackEx(
        HWND OwnerWindow, // parent of callback dialog boxes
        HWND AlternateProgressWindow, // handle to progress window
        UINT ProgressMessage, // specifies progress message
        DWORD Reserved1, // wParam of a window message
        PVOID Reserved2 // lParam of a window message
     );

Parameters
OwnerWindow

Supplies the handle of the window to use as the parent of any dialog boxes generated by the default
callback routine.

AlternateProgressWindow
Supplies the handle to a window that will receive the progress messages.

ProgressMessage
The message that is sent to AlternateProgressWindow once when the copy queue is started, and
each time a file is copied.

Reserved1
This parameter is the first message parameter that will be sent to the AlternateProgressWindow by
the default callback routine.

Reserved2
This parameter is the second message parameter that will be sent to the AlternateProgressWindow
by the default callback routine.

Return Values
A pointer to the context used by the default queue callback routine.

Remarks
When the queue starts to commit the copy sub queue, the default queue callback routine will send a
message to the window specified in AlternateProgressWindow. Reserved1 will have the value 0, and
Reserved2 will contain a pointer to the number of enqueued file copy operations.

For each file copy operation completed, the default queue callback routine will send a message to
AlternateProgressWindow, which can be used to 'tick' the progress bar. Reserved1 will have the value 1,
and Reserved2 will be 0.

SetupInitDefaultQueueCallbackEx can be used to get the default behavior for disk prompting, error
handling, and so on, and also provide a gauge embedded in a wizard page or other specialized dialog
box.

See Also
SetupInitDefaultQueueCallback

SetupInitializeFileLog       

   

[New - Windows NT]

The SetupInitializeFileLog function initializes a file to record installation operations and outcomes. This
can be the system log, where the system tracks the files installed as part of Windows NT, or any other file.

HSPFILELOG SetupInitializeFileLog(
        PCTSTR LogFileName, // optional, name of a log file to use
        DWORD Flags // controls initialization
     );

Parameters
LogFileName

This optional parameter supplies the filename of the file to use as the log file. The LogFileName
parameter must be specified if Flags does not include SPFILELOG_SYSTEMLOG. The LogFileName
parameter must not be specified if Flags includes SPFILELOG_SYSTEMLOG.

Flags
A set of flags that controls the log file initialization. This parameter can be a combination of the
following:
SPFILELOG_SYSTEMLOG

Use the Windows NT system file log which is used to track what files are installed as part of
Windows NT. The user must be Administrator to specify this option unless
SPFILELOG_QUERYONLY is specified and LogFileName is not specified. Do not specify
SPFILELOG_SYSTEMLOG in combination with SPFILELOG_FORCENEW.

SPFILELOG_FORCENEW
If the log file exits, overwrite it. If the log file exists and this flag is not specified, any new files that
are installed are added to the list in the existing log file. Do not specify in combination with
SPFILELOG_SYSTEMLOG.

SPFILELOG_QUERYONLY
Open the log file for querying only.

Return Values
The function returns the handle to the log file if it is successful. Otherwise, the the return value is
INVALID_HANDLE_VALUE and the logged error can be retrieved by a call to GetLastError.

See Also
SetupTerminateFileLog, SetupLogFile

SetupInstallFile       

   

[New - Windows NT]

The SetupInstallFile function installs a file as specified either by an INFCONTEXT returned by
SetupFindXXXLine or explicitly by the filename and path information.

BOOL SetupInstallFile(
        HINF InfHandle, // optional, handle to the INF file
        PINFCONTEXT InfContext, // optional, context for a INF file line
        PCTSTR SourceFile, // optional, name of file to copy
        PCTSTR SourcePathRoot, // optional, root path to source
        PCTSTR DestinationName, // optional, filename after copy
        DWORD CopyStyle, // specifies copy behavior
        PSP_FILE_CALLBACK CopyMsgHandler, // optional, callback routine to use
        PVOID Context // optional, callback routine context
     );

Parameters
InfHandle

This optional parameter points to the handle of an INF file that contains SourceDisksNames and
SourceDisksFiles sections. If platform-specific sections exist for the user's system (for example,
SourceDisksNames.mips and SourceDisksFiles.mips), the platform-specific section will be used. If
InfContext is NULL and CopySyle includes SP_COPY_SOURCE_ABSOLUTE or
SP_COPY_SOURCEPATH_ABSOLUTE, InfHandle is ignored.

InfContext
This optional parameter points to the context of a line in a Copy Files section in an INF file. The
routine looks this file up in the SourceDisksFiles section of InfHandle to get file copy information. If
InfContext is not specified, SourceFile must be.

SourceFile
This optional parameter supplies the filename (no path) of the file to copy. The file is looked up in the
SourceDisksFiles section. The SourceFile parameter must be specified if InfContext is not, and is
ignored if InfContext is specified.

SourcePathRoot
This optional parameter supplies the root path for the file to be copied (for example, A:\ or F:\). Paths
in the SourceDisksNames section are appended to this path. The SourcePathRoot parameter is
ignored if CopyStyle includes the SP_COPY_SOURCE_ABSOLUTE flag.

DestinationName
This optional parameter supplies the filename only (no path) of the target file. This parameter can be
NULL to indicate that the target file should have the same name as the source file. If InfContext is not
specified, DestinationName supplies the full target path and filename for the target.

CopyStyle
Flags that control the behavior of the file copy operation. These flags may be a combination of the
following values:
SP_COPY_DELETESOURCE

Delete the source file upon successful copy. The caller is not notified if the delete fails.
SP_COPY_REPLACEONLY

Copy the file only if doing so would overwrite a file at the destination path. If the target doesn't
exist, the function returns FALSE and GetLastError returns NO_ERROR.

SP_COPY_NEWER
Examine each file being copied to see if its version resources indicate that it is not newer than an
existing copy on the target.
The file version information used during version checks is that specified in the dwFileVersionMS
and dwFileVersionLS members of a VS_FIXEDFILEINFO structure, as filled in by the Win32
version functions. If one of the files does not have version resources, or if they have identical
version information, the source file is considered newer.
If the source file is not newer, and CopyMsgHandler is specified, the caller is notified and may
cancel the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_NOOVERWRITE
Check whether the target file exists, and, if so, notify the caller who may veto the copy. If
CopyMsgHandler is not specified, the file is not overwritten.

SP_COPY_NODECOMP
Do not decompress the file. When this flag is set, the target file is not given the uncompressed
form of the source name (if appropriate). For example, copying f:\mips\cmd.ex_ to \\install\temp
results in a target file of \\install\temp\cmd.ex_. If the SP_COPY_NODECOMP flag was not
specified, the file would be decompressed and the target would be called \\install\temp\cmd.exe.
The filename part of DestinationName, if specified, is stripped and replaced with the filename of
the source file. When SP_COPY_NODECOMP is specified, SP_COPY_LANGUAGEAWARE and
SP_COPY_NEWER are ignored.

SP_COPY_LANGUAGEAWARE
Examine each file being copied to see if its language differs from the language of any existing file
already on the target. If so, and CopyMsgHandler is specified, the caller is notified and may cancel
the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_SOURCE_ABSOLUTE
SourceFile is a full source path. Do not look it up in the SourceDisksNames section of the INF file.

SP_COPY_SOURCEPATH_ABSOLUTE
SourcePathRoot is the full path part of the source file. Ignore the relative source specified in the
SourceDisksNames section of the INF file for the source media where the file is located. This flag
is ignored if SP_COPY_SOURCE_ABSOLUTE is specified.

SP_COPY_FORCE_IN_USE
If the target exists, behave as if it is in use and queue the file for copying on the next system
reboot.

SP_COPY_FORCE_NOOVERWRITE
Check whether the target file exists, and, if so, the file is not overwritten. The caller is not notified.

SP_COPY_FORCE_NEWER
Examine each file being copied to see if its version resources (or timestamps for non-image files)
indicate that it is not newer than an existing copy on the target. If the file being copied is not newer,
the file is not copied. The caller is not notified. The function returns FALSE, and GetLastError
returns NO_ERROR.

CopyMsgHandler
This optional parameter points to a callback function to be notified of various conditions that may arise
during the file copy.

Context
This optional parameter points to a caller-defined value that is passed as the first parameter of the
callback function.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

If GetLastError returns NO_ERROR, the file copy operation was not completed because the callback

function returned FALSE.

Remarks
If a UNC directory is specified as the target directory of a file installation, you must ensure it exists before
you call SetupInstallFile. The setup functions do not check for the existence of and do not create UNC
directories. If the target UNC directory does not exist, the file installation will fail.

See Also
SetupCloseFileQueue, SetupCommitFileQueue, SetupOpenFileQueue, SetupQueueCopy

SetupInstallFileEx       

   

[New - Windows NT]

The SetupInstallFileEx function installs a file as specified either by an INFCONTEXT returned by
SetupFindXXXLine or explicitly by the filename and path information. This function is the same as
SetupInstallFile, except that a BOOL is returned indicating whether or not the file was in use.

BOOL SetupInstallFileEx(
        HINF InfHandle, // optional, handle to the INF file
        PINFCONTEXT InfContext, // optional, context of an INF file
        PCTSTR SourceFile, // optional, filename of the source
        PCTSTR SourcePathRoot, // optional, root path to the source
        PCTSTR DestinationName, // optional, filename after copy
        DWORD CopyStyle, // specifies copy behavior
        PSP_FILE_CALLBACK CopyMsgHandler, // optional, callback routine to use
        PVOID Context, // optional, callback routine context
        PBOOL FileWasInUse // receives the file in use information
     );

Parameters
InfHandle

This optional parameter points to the handle of an INF file that contains the SourceDisksNames and
SourceDisksFiles sections. If platform-specific sections exist for the user's system (for example,
SourceDisksNames.mips and SourceDisksFiles.mips), the platform-specific section will be used. If
InfContext is not specified and CopySyle includes SP_COPY_SOURCE_ABSOLUTE or
SP_COPY_SOURCEPATH_ABSOLUTE, InfHandle is ignored.

InfContext
This optional parameter supplies context for a line in a Copy Files section in an INF file. The routine
looks this file up in the SourceDisksFiles section of InfHandle to get file copy information. If
InfContext is not specified, SourceFile must be.

SourceFile
This optional parameter supplies the filename (no path) of the file to copy. The file is looked up in the
SourceDisksFiles section. The SourceFile parameter must be specified if InfContext is not. However,
SourceFile is ignored if InfContext is specified.

SourcePathRoot
This optional parameter supplies the root path for the file to be copied (for example, A:\ or F:\). Paths
in the SourceDisksNames section are appended to this path. The SourcePathRoot parameter is
ignored if CopyStyle includes the SP_COPY_SOURCE_ABSOLUTE flag.

DestinationName
This optional parameter can be used to specify a new name for the copied file. If InfContext is
specified, DestinationName supplies the filename only (no path) of the target file. This parameter can
be NULL to indicate that the target file should have the same name as the source file. If InfContext is
not specified, DestinationName supplies the full target path and filename for the target.

CopyStyle
Flags that control the behavior of the file copy operation. These flags may be a combination of the
following values:
SP_COPY_DELETESOURCE

Delete the source file upon successful copy. The caller is not notified if the delete fails.

SP_COPY_REPLACEONLY
Copy the file only if doing so would overwrite a file at the destination path.

SP_COPY_NEWER
Examine each file being copied to see if its version resources indicate that it is not newer than an
existing copy on the target.
The file version information used during version checks is that specified in the dwFileVersionMS
and dwFileVersionLS members of a VS_FIXEDFILEINFO structure, as filled in by the Win32
version functions. If one of the files does not have version resources, or if they have identical
version information, the source file is considered newer.
If the source file is not newer, and CopyMsgHandler is specified, the caller is notified and may
cancel the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_NOOVERWRITE
Check whether the target file exists, and, if so, notify the caller who may veto the copy. If
CopyMsgHandler is not specified, the file is not overwritten.

SP_COPY_NODECOMP
Do not decompress the file. When this flag is set, the target file is not given the uncompressed
form of the source name (if appropriate). For example, copying f:\mips\cmd.ex_ to \\install\temp
results in a target file of \\install\temp\cmd.ex_. If the SP_COPY_NODECOMP flag was not
specified, the file would be decompressed and the target would be called \\install\temp\cmd.exe.
The filename part of DestinationName, if specified, is stripped and replaced with the filename of
the source file. When SP_COPY_NODECOMP is specified, SP_COPY_LANGUAGEAWARE and
SP_COPY_NEWER are ignored.

SP_COPY_LANGUAGEAWARE
Examine each file being copied to see if its language differs from the language of any existing file
already on the target. If so, and CopyMsgHandler is specified, the caller is notified and may cancel
the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_SOURCE_ABSOLUTE
SourceFile is a full source path. Do not look it up in the SourceDisksNames section of the INF file.

SP_COPY_SOURCEPATH_ABSOLUTE
SourcePathRoot is the full path part of the source file. Ignore the relative source specified in the
SourceDisksNames section of the INF file for the source media where the file is located. This flag
is ignored if SP_COPY_SOURCE_ABSOLUTE is specified.

SP_COPY_FORCE_IN_USE
If the target exists, behave as if it is in use and queue the file for copying on the next system
reboot.

SP_COPY_IN_USE_NEEDS_REBOOT
If the file was in use during the copy operation, alert the user that the system needs to be rebooted.

SP_COPY_NO_SKIP
Do not give the user the option to skip a file.

SP_COPY_FORCE_NOOVERWRITE
Check whether the target file exists, and, if so, the file is not overwritten. The caller is not notified.

SP_COPY_FORCE_NEWER
Examine each file being copied to see if its version resources (or timestamps for non-image files)
indicate that it is not newer than an existing copy on the target. If the file being copied is not newer,
the file is not copied. The caller is not notified.

SP_COPY_WARNIFSKIP
If the user tries to skip a file, warn them that skipping a file may affect the installation. (Used for
system-critical files.)

CopyMsgHandler
This optional parameter points to a callback function to be notified of various conditions that may arise
during the file copy.

Context

Pointer to a caller-defined value that is passed as the first parameter of the callback function.
FileWasInUse

This optional parameter points to a caller-supplied variable in which this function returns a flag
indicating whether the file was in use.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

If GetLastError returns NO_ERROR, the file copy operation was not completed because the callback
function returned FALSE.

Remarks
This API is typically used when installing new versions of system files that are likely to be in use. It
updates a BOOL value that indicates whether the file was in use. If the file was in use, then the file copy
operation is post-poned until the system is rebooted.

If a UNC directory is specified as the target directory of a file installation, you must ensure it exists before
you call SetupInstallFileEx. The setup functions do not check for the existence of and do not create UNC
directories. If the target UNC directory does not exist, the file installation will fail.

See Also
SetupCloseFileQueue, SetupCommitFileQueue, SetupInstallFile, SetupOpenFileQueue,
SetupQueueCopy, SetupPromptReboot

SetupInstallFilesFromInfSection       

   

[New - Windows NT]

The SetupInstallFilesFromInfSection function queues all the files in an INF file Copy Files section to be
installed.

BOOL SetupInstallFilesFromInfSection(
        HINF InfHandle, // handle to the INF file
        HINF LayoutInfHandle, // optional, layout INF handle
        HSPFILEQ FileQueue, // handle to the file queue
        PCTSTR SectionName, // section to install files from
        PCTSTR SourceRootPath, // optional, root path to source files
        UINT CopyFlags // optional, specifies copy behavior
     );

Parameters
InfHandle

Specifies a handle to an INF file that contains the section to be installed. The INF file must be a
Windows 95- or Windows NT 4.0-style INF file; script-based INF files are not supported by
SetupInstallFilesFromInfSection.

LayoutInfHandle
This optional parameter supplies a handle to the INF file that contains the SourceDisksFiles and
SourceDisksNames sections. If LayoutInfHandle is not specified, then the SourceDisksFiles and
SourceDisksNames sections from InfHandle will be used.

FileQueue
Supplies a handle to the queue to add installation operations to.

SectionName
Supplies the name of the section in InfHandle to operate on.

SourceRootPath
This optional parameter specifies a root path to the source files to copy. An example would be A:\ or \\
pegasus\win\install.

CopyFlags
This optional parameter specifies a set of flags that control the behavior of the file copy operation.
These flags may be a combination of the following values:
SP_COPY_DELETESOURCE

Delete the source file upon successful copy. The caller is not notified if the delete fails.
SP_COPY_REPLACEONLY

Copy the file only if doing so would overwrite a file at the destination path.
SP_COPY_NEWER

Examine each file being copied to see if its version resources indicate that it is not newer than an
existing copy on the target.
The file version information used during version checks is that specified in the dwFileVersionMS
and dwFileVersionLS members of a VS_FIXEDFILEINFO structure, as filled in by the Win32
version functions. If one of the files does not have version resources, or if they have identical
version information, the source file is considered newer.
If the source file is not newer, and CopyMsgHandler is specified, the caller is notified and may
cancel the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_NOOVERWRITE

Check whether the target file exists, and, if so, notify the caller who may veto the copy. If
CopyMsgHandler is not specified, the file is not overwritten.

SP_COPY_NODECOMP
Do not decompress the file. When this flag is set, the target file is not given the uncompressed
form of the source name (if appropriate). For example, copying f:\mips\cmd.ex_ to \\install\temp
results in a target file of \\install\temp\cmd.ex_. If the SP_COPY_NODECOMP flag was not
specified, the file would be decompressed and the target would be called \\install\temp\cmd.exe.
The filename part of DestinationName, if specified, is stripped and replaced with the filename of
the source file. When SP_COPY_NODECOMP is specified, SP_COPY_LANGUAGEAWARE and
SP_COPY_NEWER are ignored.

SP_COPY_LANGUAGEAWARE
Examine each file being copied to see if its language differs from the language of any existing file
already on the target. If so, and CopyMsgHandler is specified, the caller is notified and may cancel
the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_SOURCE_ABSOLUTE
SourceFile is a full source path. Do not look it up in the SourceDisksNames section of the INF file.

SP_COPY_SOURCEPATH_ABSOLUTE
SourcePathRoot is the full path part of the source file. Ignore the relative source specified in the
SourceDisksNames section of the INF file for the source media where the file is located. This flag
is ignored if SP_COPY_SOURCE_ABSOLUTE is specified.

SP_COPY_FORCE_IN_USE
If the target exists, behave as if it is in use and queue the file for copying on the next system
reboot.

SP_COPY_IN_USE_NEEDS_REBOOT
If the file was in use during the copy operation, alert the user that the system needs to be rebooted.

SP_COPY_NO_SKIP
Do not give the user the option to skip a file.

SP_COPY_FORCE_NOOVERWRITE
Check whether the target file exists, and, if so, the file is not overwritten. The caller is not notified.

SP_COPY_FORCE_NEWER
Examine each file being copied to see if its version resources (or timestamps for non-image files)
indicate that it is not newer than an existing copy on the target. If the file being copied is not newer,
the file is not copied. The caller is not notified.

SP_COPY_WARNIFSKIP
If the user tries to skip a file, warn them that skipping a file may affect the installation. (Used for
system-critical files.)

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
SetupInstallFilesFromInfSection can be called multiple times to queue the files specified in multiple INF
sections. After the queue has been successfully committed and the files have been copied, renamed,
and/or deleted, SetupInstallFromInfSection can be called to perform registry and INI installation
operations.

If a UNC directory is specified as the target directory of a file installation, you must ensure it exists before
you call SetupInstallFilesFromInfSection. The setup functions do not check for the existence of and do
not create UNC directories. If the target UNC directory does not exist, the file installation will fail.

See Also

SetupInstallServicesFromInfSection, SetupInstallFromInfSection

SetupInstallFromInfSection       

   

[New - Windows NT]

The SetupInstallFromInfSection function carries out directives in an INF file Install section.

BOOL SetupInstallFromInfSection(
        HWND Owner, // optional, handle of a parent window
        HINF InfHandle, // handle to the INF file
        PCTSTR SectionName, // section of the INF file to install
        UINT Flags, // which lines to install from section
        HKEY RelativeKeyRoot, // optional, key for registry installs
        PCTSTR SourceRootPath, // optional, path for source files
        UINT CopyFlags, // optional, specifies copy behavior
        PSP_FILE_CALLBACK MsgHandler, // optional, specifies callback routine
        PVOID Context, // optional, callback routine context
        HDEVINFO DeviceInfoSet, // optional, device information set
        PSP_DEVINFO_DATA DeviceInfoData // optional, device info structure
     );

Parameters
Owner

This optional parameter specifies the window handle of the window that owns any dialog boxes that
are generated during installation, such as for disk prompting or file copying. If Owner is not specified,
these dialog boxes become top-level windows.

InfHandle
Specifies the handle to the INF file that contains the section to be processed. The INF file must be a
Windows 95- or Windows NT 4.0-style file; legacy INF files are not supported by
SetupInstallFromInfSection.

SectionName
Supplies the name of the Install section in the INF file to process.

Flags
A set of flags that indicates what actions to perform. The flags can be a combination of the following:
SPINST_INIFILES

Perform INI-file operations (UpdateInis, UpdateIniFields lines in the Install section being
processed).

SPINST_REGISTRY
Perform registry operations (AddReg, DelReg lines in the Install section being processed).

SPINST_INI2REG
Perform INI-file to registry operations (Ini2Reg lines in the Install section being processed).

SPINST_LOGCONFIG
This flag is only used when installing a device driver.
Perform logical configuration operations (LogConf lines in the Install section being processed).
This flag is only used if DeviceInfoSet and DeviceInfoData are specified.
For more information about installing device drivers, LogConf, DeviceInfoSet, or DeviceInfoData,
see the DDK Programmer's Guide.

SPINST_FILES
Perform file operations (CopyFiles, DelFiles, RenFiles lines in the Install section being

processed).
SPINST_ALL

Perform all installation operations.
RelativeKeyRoot

This optional parameter must be specified if Flags includes SPINST_REGISTRY or
SPINST_INI2REG. Specifies a handle to a registry key to be used as the root when the INF file
specifies HKR as the key.

SourceRootPath
Specifies the source root for file copies. An example would be A:\ or \\pegasus\win\install. If Flags
includes SPINST_FILES, and SourceRootPath is NULL, the system provides a default root path.

CopyFlags
This optional parameter must be specified if Flags includes SPINST_FILES. Specifies flags to be
passed to the SetupQueueCopySection function when files are queued for copy. These flags may
be a combination of the following values:
SP_COPY_DELETESOURCE

Delete the source file upon successful copy. The caller is not notified if the delete fails.
SP_COPY_REPLACEONLY

Copy the file only if doing so would overwrite a file at the destination path.
SP_COPY_NEWER

Examine each file being copied to see if its version resources indicate that it is not newer than an
existing copy on the target.
The file version information used during version checks is that specified in the dwFileVersionMS
and dwFileVersionLS members of a VS_FIXEDFILEINFO structure, as filled in by the Win32
version functions. If one of the files does not have version resources, or if they have identical
version information, the source file is considered newer.
If the source file is not newer, and CopyMsgHandler is specified, the caller is notified and may
cancel the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_NOOVERWRITE
Check whether the target file exists, and, if so, notify the caller who may veto the copy. If
CopyMsgHandler is not specified, the file is not overwritten.

SP_COPY_NODECOMP
Do not decompress the file. When this flag is set, the target file is not given the uncompressed
form of the source name (if appropriate). For example, copying f:\mips\cmd.ex_ to \\install\temp
results in a target file of \\install\temp\cmd.ex_. If the SP_COPY_NODECOMP flag was not
specified, the file would be decompressed and the target would be called \\install\temp\cmd.exe.
The filename part of DestinationName, if specified, is stripped and replaced with the filename of
the source file. When SP_COPY_NODECOMP is specified, SP_COPY_LANGUAGEAWARE and
SP_COPY_NEWER are ignored.

SP_COPY_LANGUAGEAWARE
Examine each file being copied to see if its language differs from the language of any existing file
already on the target. If so, and CopyMsgHandler is specified, the caller is notified and may cancel
the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_SOURCE_ABSOLUTE
SourceFile is a full source path. Do not look it up in the SourceDisksNames section of the INF file.

SP_COPY_SOURCEPATH_ABSOLUTE
SourcePathRoot is the full path part of the source file. Ignore the relative source specified in the
SourceDisksNames section of the INF file for the source media where the file is located. This flag
is ignored if SP_COPY_SOURCE_ABSOLUTE is specified.

SP_COPY_FORCE_IN_USE
If the target exists, behave as if it is in use and queue the file for copying on the next system
reboot.

SP_COPY_IN_USE_NEEDS_REBOOT

If the file was in use during the copy operation inform the user that the system needs to be
rebooted. This flag is only used when later calling SetupPromptReboot or SetupScanFileQueue.

SP_COPY_NO_SKIP
Do not give the user the option to skip a file.

SP_COPY_FORCE_NOOVERWRITE
Check whether the target file exists, and, if so, the file is not overwritten. The caller is not notified.

SP_COPY_FORCE_NEWER
Examine each file being copied to see if its version resources (or timestamps for non-image files)
indicate that it is not newer than an existing copy on the target. If the file being copied is not newer,
the file is not copied. The caller is not notified.

SP_COPY_WARNIFSKIP
If the user tries to skip a file, warn them that skipping a file may affect the installation. (Used for
system-critical files.)

MsgHandler
This optional parameter must be specified if Flags includes SPINST-FILES. Specifies a callback
function to be used when the file queue built by this routine internally is committed with the
SetupCommitFileQueue function.

Context
This optional parameter must be specified if Flags includes SPINST_FIlLES. Specifies a value to be
passed to the callback function when the file queue built by this routine internally is committed via
SetupCommitFileQueue.

DeviceInfoSet
This optional parameter supplies a handle to a device information set. For more information about the
Device Installer setup functions, see the DDK Programmer's Guide.

DeviceInfoData
This optional parameter supplies a pointer to the SP_DEVINFO_DATA structure that provides a
context to a specific element in the set specified by DeviceInfoSet. For more information about the
Device Installer setup functions, see the DDK Programmer's Guide.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
If a UNC directory is specified as the target directory of a file copy operation, you must ensure it exists
before you call SetupInstallFromInfSection. The setup functions do not check for the existence of and
do not create UNC directories. If the target UNC directory does not exist, the file installation will fail.

See Also
SetupInstallFilesFromInfSection, SetupInstallServicesFromInfSection

SetupInstallServicesFromInfSection   
   

   

[New - Windows NT]

The SetupInstallServicesFromInfSection function performs service installation and deletion operations
specified in a Service Install section of an INF file.

BOOL SetupInstallServicesFromInfSection(
        HINF InfHandle, // handle to the open INF file
        PCTSTR SectionName, // section to install
        DWORD Flags // controls installation procedure
     );

Parameters
InfHandle

Supplies the handle of an INF file that contains a Service Install section.
SectionName

Supplies the name of the Service Install section to process.
Flags

A flag that controls the installation.
SPSVCINST_TAGTOFRONT

Move the service's tag to the front of its group order list.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupInstallFromInfSection, SetupInstallFilesFromInfSection

SetupIterateCabinet       

   

[New - Windows NT]

The SetupIterateCabinet function iterates through all the files in a cabinet and sends a notification to a
callback function for each file found.

BOOL SetupIterateCabinet(
        PCTSTR CabinetFile, // name of the cabinet file
        DWORD Reserved, // this parameter is not used
        PSP_FILE_CALLBACK MsgHandler, // callback routine to use
        PVOID Context // callback routine context
     );

Parameters
CabinetFile

Specifies the cabinet (.CAB) file to iterate through.
Reserved

Not currently used.
MsgHandler

Supplies a pointer to a routine that will process the notifications SetupIterateCabinet returns as it
iterates through the files in the cabinet file. The callback routine may then return a value specifying
whether to decompress, copy, or skip the file.

Context
Specifies the context value that is passed into the routine specified in MsgHandler. This enables the
callback routine to track values between notifications, without having to use global variables.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

SetupLogFile       

   

[New - Windows NT]

The SetupLogFile function adds an entry to the log file.

BOOL SetupLogFile(
        HSPFILELOG FileLogHandle, // handle to the log file
        PCTSTR LogSectionName, // optional, name to group files by
        PCTSTR SourceFileName, // filename on source media
        PCTSTR TargetFileName, // filename in target directory
        DWORD Checksum, // optional, 32-bit checksum value
        PCTSTR    DiskTagfile, // optional, source media tag file
        PCTSTR DiskDescription, // optional, media description
        PCTSTR OtherInfo, // optional, additional information
        DWORD Flags // indicates whether OEM file
     );

Parameters
FileLogHandle

Supplies the handle to the file log as returned by SetupInitializeFileLog. The caller must not have
passed SPFILELOG_QUERYONLY when the log file was initialized.

LogSectionName
This optional parameter supplies the name for a logical grouping of names within the log file.
Required if SPFILELOG_SYSTEMLOG was not passed when the file log was initialized.
Otherwise, LogSectionName is optional.

SourceFileName
Supplies the name of the file as it exists on the source media from which it was installed. This name
should be in whatever format is meaningful to the caller.

TargetFileName
Supplies the name of the file as it exists on the target. This name should be in whatever format is
meaningful to the caller.

Checksum
This optional parameter supplies a 32-bit checksum value. Required for the system log.

DiskTagfile
This optional parameter specifies the tagfile for the media from which the file was installed. Required
for the system log if SPFILELOG_OEMFILE is specified. Ignored for the system log if
SPFILELOG_OEMFILE is not specified.

DiskDescription
This optional parameter provides the human-readable description of the media from which the file
was installed. Required for the system log if SPFILELOG_OEMFILE is specified in the Flags
parameter. Ignored for the system log if SPFILELOG_OEMFILE is not specified in the Flags
parameter.

OtherInfo
This optional parameter supplies additional information to be associated with the file.

Flags
This parameter can be SPFILELOG_OEMFILE, which is meaningful only for the system log and
indicates that the file is not supplied by Microsoft. This parameter can be used to convert an existing
file's entry, such as when an OEM overwrites a Microsoft-supplied system file.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupRemoveFileLogEntry

SetupOpenAppendInfFile       

   

[New - Windows NT]

The SetupOpenAppendInfFile function appends the information in an INF file to an INF file previously
opened by SetupOpenInfFile.

BOOL SetupOpenAppendInfFile(
        PCTSTR FileName, // optional, name of the file to append
        HINF InfHandle, // handle of the file to append to
        PUINT ErrorLine // optional, receives error information
     );

Parameters
FileName

If not NULL, FileName points to a null-terminated string containing the name (and optionally the path)
of the INF file to be opened. If the filename does not contain path separator characters, it is searched
for, first in the %windir%\inf directory, and then in the %windir%\system32 directory. If the filename
contains path separator characters, it is assumed to be a full path specification and no further
processing is performed on it. If FileName is NULL, the INF filename is retrieved from the LayoutFile
value of the Version section in the existing INF file. The same search logic is applied to the filename
retrieved from the LayoutFile key.

InfHandle
Existing INF handle to which this INF file will be appended.

ErrorLine
An optional parameter that points to a caller-supplied variable to which this function returns the (1-
based) line number where an error occurred during loading of the INF file. This value is generally
reliable only if GetLastError does not return ERROR_NOT_ENOUGH_MEMORY. If an out-of-
memory condition does occur, ErrorLine may be 0.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

If FileName was not specified and there was no LayoutFile value in the Version section of the existing
INF File, GetLastError returns ERROR_INVALID_DATA.

Remarks
This function can only be called for Windows 95- or Windows NT 4.0-style INF files. Otherwise, the
function returns FALSE and GetLastError will return ERROR_INVALID_PARAMETER. The main purpose
of this function is to combine an INF file with the source file location information contained in the file
specified in the LayoutFile entry of the Version section (typically, LAYOUT.INF).

See Also
SetupOpenInfFile, SetupCloseInfFile

SetupOpenFileQueue       

   

[New - Windows NT]

The SetupOpenFileQueue function creates a setup file queue.

HSPFILEQ SetupOpenFileQueue(
        VOID // takes no parameters
     );

Parameters
None.

Return Values
If the function succeeds, it returns a handle to a setup file queue. If there is not enough memory to create
the queue, the function returns INVALID_HANDLE_VALUE.

Remarks
After the file queue has been committed and is no longer needed, SetupCloseFileQueue should be
called to release the resources allocated during SetupOpenFileQueue.

See Also
SetupCloseFileQueue, SetupCommitFileQueue, SetupInstallFile, SetupQueueCopy,
SetupQueueDelete, SetupQueueRename

SetupOpenInfFile       

   

[New - Windows NT]

The SetupOpenInfFile function opens an INF file and returns a handle to it.

HINF SetupOpenInfFile(
        PCTSTR FileName, // name of the INF to open
        PCTSTR InfClass, // optional, the class of the INF file
        DWORD InfStyle, // specifies the style of the INF file
        PUINT ErrorLine // optional, receives error information
     );

Parameters
FileName

Points to a null-terminated string containing the name (and optional path) of the INF file to be opened.
If the filename does not contain path separator characters, it is searched for, first in the %windir%\inf
directory, and then in the %windir%\system32 directory. If the filename contains path separator
characters, it is assumed to be a full path specification and no further processing is performed on it.

InfClass
An optional parameter that points to a null-terminated string containing the class of INF file desired.
For legacy INF files, this string must match the type specified in the OptionType value of the
Identification section in the INF file (for example, OptionType=NetAdapter). For Windows 95- or
Windows NT 4.0-style INF files, this string must match the Class value of the Version section (for
example, Class=Net). If there is no entry in the Class value, but there is an entry for ClassGUID in the
Version section, the corresponding class name for that GUID is retrieved and used for the
comparison.

InfStyle
Specifies the style of INF file to open. May be a combination of the following flags:
INF_STYLE_OLDNT

Windows NT 3.x script-based INF files.
INF_STYLE_WIN4

Windows 95- or Windows NT 4.0-style INF files.
ErrorLine

An optional parameter that points to a caller-supplied variable to which this function returns the (1-
based) line number where an error occurred during loading of the INF file. This value is generally
reliable only if GetLastError does not return ERROR_NOT_ENOUGH_MEMORY. If an out-of-
memory condition does occur, ErrorLine may be 0.

Return Values
The function returns a handle to the opened INF file if it is successful. Otherwise, the return value is
INVALID_HANDLE_VALUE. Extended error information can be retrieved by a call to GetLastError.

Remarks
If the load fails because the INF file type does not match InfClass, the function returns FALSE and a call
to GetLastError returns ERROR_CLASS_MISMATCH.

If multiple INF file styles are specified, the style of the INF file opened can be determined by calling the
SetupGetInfInformation function.

Since there may be more than one class GUID with the same class name, callers interested in INF files of
a particular class (that is, a particular class GUID) should retrieve the ClassGUID value from the INF file
by calling SetupQueryInfVersionInformation.

See Also
SetupOpenAppendInfFile, SetupCloseInfFile, SetupGetInfInformation

SetupOpenMasterInf       

   

[New - Windows NT]

The SetupOpenMasterInf function opens the master INF file that contains file and layout information for
files shipped with Windows NT.

HINF SetupOpenMasterInf(
        VOID // takes no parameters
     );

Parameters
None.

Return Values
If SetupOpenMasterInf is successful, it returns a handle to the opened INF file that contains file/layout
information for files shipped with Windows NT. Otherwise, the return value is INVALID_HANDLE_VALUE.
To get extended error information, call GetLastError.

See Also
SetupOpenInfFile, SetupOpenAppendInfFile

SetupPromptForDisk       

   

[New - Windows NT]

The SetupPromptForDisk function displays a dialog box that prompts the user for a disk.

UINT SetupPromptForDisk(
        HWND hwndParent, // parent window of the dialog box
        PCTSTR DialogTitle, // optional, title of the dialog box
        PCTSTR DiskName, // optional, name of disk to insert
        INPCTSTR PathToSource, // optional, expected source path
        PCTSTR FileSought, // name of file needed
        PCTSTR TagFile, // optional, source media tag file
        DWORD DiskPromptStyle, // specifies dialog box behavior
        PTSTR PathBuffer, // receives the source location
        DWORD PathBufferSize, // size of the supplied buffer
        PDWORD PathRequiredSize // optional, buffer size needed
     );

Parameters
hwndParent

Handle to the parent window for this dialog box.
DialogTitle

This optional parameter points to a null-terminated string specifying the dialog title. If this parameter is
NULL, the default of ""%s--Files Needed"" (localized) is used. The "%s" is replaced with the text
retrieved from the parent window. If no text is retrieved from the parent window, the title is "Files
Needed".

DiskName
This optional parameter points to a null-terminated string specifying the name of the disk to insert. If
this parameter is NULL, the default "(Unknown)" (localized) is used.

PathToSource
This optional parameter points to a null-terminated string specifying the path part of the expected
location of the file, for example, F:\mips. If not specified, the path where SetupPromptForDisk most
recently successfully located a file is used. If that list is empty, a system default is used.

FileSought
Pointer to a null-terminated string specifying the name of the file needed (filename part only). The
filename is displayed if the user clicks on the Browse button. This routine looks for the file using its
compressed form names; therefore, you can pass cmd.exe and not worry that the file actually exists
as cmd.ex_ on the source media.

TagFile
This optional parameter points to a null-terminated string specifying a tag file (filename part only) that
identifies the presence of a particular removable media volume. If the currently selected path would
place the file on removable media and a tag file is specified, SetupPromptForDisk looks for the tag
file at the root of the drive to determine whether to continue.
For example, if PathToSource is A:\i386, the tagfile is disk1.tag, and the user types B:\i386 into the
edit control of the prompt dialog box, the routine looks for B:\disk1.tag to determine whether to
continue. If the tag file is not found, the function looks for the tagfile using PathToSource.
If a tag file is not specified, removable media works just like non-removable media and FileSought is
looked for before continuing.

DiskPromptStyle
Specifies the behavior of the dialog box. This can be a combination of the following flags:
IDF_CHECKFIRST

Check for the file/disk before displaying the prompt dialog box, and, if present, return
DPROMPT_SUCCESS immediately.

IDF_NOBEEP
Prevent the dialog box from beeping to get the user's attention when it first appears.

IDF_NOBROWSE
Do not display the browse option.

IDF_NOCOMPRESSED
Do not check for compressed versions of the source file.

IDF_NODETAILS
Do not display detail information.

IDF_NOFOREGROUND
Prevent the dialog box from becoming the foreground window.

IDF_NOSKIP
Do not display the skip option.

IDF_OEMDISK
Prompt for a disk supplied by a hardware manufacturer.

IDF_WARNIFSKIP
Warn the user that skipping a file may affect the installation.

PathBuffer
This optional parameter points to a caller-supplied buffer that, upon return, receives the path (no
filename) of the location specified by the user through the dialog box.

PathBufferSize
Specifies the size of the buffer pointed to by PathBuffer. It should be at least MAX_PATH long.

PathRequiredSize
This optional parameter points to a caller-supplied variable that receives the required size for
PathBuffer.

Return Values
The function returns one of the following values:

DPROMPT_SUCCESS
The requested disk/file is present and accessible. If PathBuffer was specified, it contains the path
to the file (not including the filename).

DPROMPT_CANCEL
The user clicked on the Cancel button.

DPROMPT_SKIPFILE
The user clicked on the Skip File button.

DPROMPT_BUFFERTOOSMALL
The provided PathBuffer is too small. Check PathRequiredSize for the actual size needed for the
buffer.

DPROMPT_OUTOFMEMORY
There is insufficient memory to process the request.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize and RequiredSize are specified
in number of characters. This number includes the null terminator. For the ANSI version of this function,
the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is NO_ERROR. Otherwise, the return value is one of the values
specified preceding.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

See Also
SetupCopyError, SetupDeleteError, SetupRenameError

SetupPromptReboot       

   

[New - Windows NT]

The SetupPromptReboot function asks the user if he wants to reboot the system, optionally dependent
on whether any files in a committed file queue were in use during a file operation. If the user answers
"yes" to the prompt, shutdown is initiated before this routine returns.

INT SetupPromptReboot(
        HSPFILEQ FileQueue, // optional, handle to a file queue
        HWND Owner, // parent window of this dialog box
        BOOL ScanOnly // optional, do not prompt user
     );

Parameters
FileQueue

This optional parameter supplies a handle to the file queue upon which to base the decision about
whether shutdown is necessary. If FileQueue is not specified, SetupPromptReboot assumes
shutdown is necessary and asks the user what to do.

Owner
Supplies the handle for the parent window to own windows created by this function.

ScanOnly
This optional parameter enables you to specify whether or not to prompt the user when
SetupPromptReboot is called.
If TRUE, the user is never asked about rebooting, and system shutdown is not initiated. In this case,
FileQueue must be specified. If ScanOnly is FALSE, the user is asked about rebooting, as previously
described.
Use ScanOnly to determine if shutdown is necessary separately from actually initiating a shutdown.

Return Values
The function returns a combination of the following flags or -1 if an error occurred:

SPFILEQ_FILE_IN_USE
At least one file was in use during the queue commit process and there are delayed file operations
pending. This flag will only be set if FileQueue is specified.

SPFILEQ_REBOOT_RECOMMENDED
The system should be rebooted. Depending on other flags and user response to the shutdown query,
shutdown may be underway.

SPFILEQ_REBOOT_IN_PROGRESS
System shutdown is in progress.

See Also
SetupPromptForDisk

SetupQueryFileLog       

   

[New - Windows NT]

The SetupQueryFileLog function returns information from a setup file log.

BOOL SetupQueryFileLog(
        HSPFILELOG FileLogHandle, // handle to the log file
        PCTSTR LogSectionName, // optional, name to group by
        PCTSTR TargetFileName, // name of target file
        SetupFileLogInfo DesiredInfo, // specifies info to return
        PTSTR DataOut, // optional, receives info
        DWORD ReturnBufferSize, // size of supplied buffer
        PDWORD RequiredSize // optional, needed buffer size
     );

Parameters
FileLogHandle

Supplies the handle to the file log as returned by SetupInitializeLogFile.
LogSectionName

This optional parameter supplies the section name for the log file in a format that is meaningful to the
caller. Required for non-system logs. If no LogSectionName is specified for a system log, a default is
supplied.

TargetFileName
Supplies the name of the file for which log information is desired.

DesiredInfo
Indicates what information should be returned to the DataOut buffer. It can take one of the following
enumerated values:

Value Meaning
SetupFileLogSourceFilename The name of the source file as it

exists on the source media
SetupFileLogChecksum A 32-bit checksum value used by

the system log
SetupFileLogDiskTagfile The name of the tag file of the

media source containing the
source file

SetupFileLogDiskDescription The human-readable description
of the media where the source file
resides

SetupFileLogOtherInfo Additional information associated
with the logged file

DataOut
This optional parameter points to a caller-supplied buffer in which this function returns the requested
information for the file. Not all information is provided for every file. An error is not returned if an empty
entry for the file exists in the log.

ReturnBufferSize
Supplies the size of the buffer, pointed to by DataOut. If the buffer is too small and DataOut is
specified, data is not stored in the buffer and the function returns FALSE. If DataOut is not specified,

the ReturnBufferSize parameter is ignored.
RequiredSize

This optional parameter points to a caller-supplied variable in which this function returns the required
size of DataOut.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize, and ReturnRequiredSize are
specified in number of characters. This number includes the null terminator. For the ANSI version of this
function, the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

Remarks
If the value of DesiredInfo is greater than SetupFileLogOtherInfo the function will fail, and GetLastError
will return ERROR_INVALID_PARAMETER.

See Also
SetupLogFile

SetupQueryInfFileInformation       

   

[New - Windows NT]

The SetupQueryInfFileInformation function returns an INF filename from an SP_INF_INFORMATION
structure to a caller-supplied buffer.

BOOL SetupQueryInfFileInformation(
        PSP_INF_INFORMATION InfInformation, // structure that contains the INF info
        UINT InfIndex, // index of the file to investigate
        PTSTR ReturnBuffer, // optional, receives the information
        DWORD ReturnBufferSize, // size of the supplied buffer
        PDWORD Required Size // optional, buffer size needed
     );

Parameters
InfInformation

Points to an SP_INF_INFORMATION structure returned from a call to the SetupGetInfInformation
function.

InfIndex
The index of the constituent INF filename to retrieve. This index can be in the range [0,
InfInformation.InfCount). Meaning that the values zero through, but not including,
InfInformation.InfCount are valid.

ReturnBuffer
If not NULL, ReturnBuffer supplies a pointer to a caller-supplied buffer in which this function returns
the full INF filename.

ReturnBufferSize
Specifies the size of the buffer pointed to by the ReturnBuffer parameter.

RequiredSize
If not NULL, points to a caller-supplied variable in which this function returns the required size for the
buffer pointed to by the ReturnBuffer parameter. If ReturnBuffer is specified and the actual size is
larger than ReturnBufferSize, the function fails and a call to GetLastError returns
ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes PathBufferSize, and PathRequiredSize are
specified in number of characters. This number includes the null terminator. For the ANSI version of this
function, the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the
buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and

then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

See Also
SetupGetInfInformation, SetupQueryInfVersionInformation

SetupQueryInfVersionInformation     

   

[New - Windows NT]

The SetupQueryInfVersionInformation function returns INF file version information from an
SP_INF_INFORMATION structure to a caller-supplied buffer.

BOOL SetupQueryInfVersionInformation(
        PSP_INF_INFORMATION InfInformation, // structure that contains INF info
        UINT InfIndex, // index of the file to investigate
        PCTSTR Key, // optional, the key to retrieve
        PTSTR ReturnBuffer, // optional, receives the version info
        DWORD ReturnBufferSize, // size of the supplied buffer
        PDWORD RequiredSize // optional, buffer size needed
     );

Parameters
InfInformation

Points to an SP_INF_INFORMATION structure previously returned from a call to the
SetupGetInfInformation function.

InfIndex
Specifies the index of the constituent INF file to retrieve version information from. This index can be in
the range [0, InfInformation.InfCount).      Meaning that the values zero through, but not including,
InfInformation.InfCount are valid.

Key
An optional parameter that points to a null-terminated string containing the key name whose
associated string is to be retrieved. If this parameter is NULL, all resource keys are copied to the
supplied buffer. Each string is null-terminated, with an extra null at the end of the list.

ReturnBuffer
If not NULL, ReturnBuffer points to a call-supplied character buffer in which this function returns the
INF file style.

ReturnBufferSize
Specifies the size of the buffer pointed to by the ReturnBuffer parameter.

RequiredSize
If not NULL, points to a caller-supplied variable in which this function returns the size required for the
buffer pointed to by the ReturnBuffer parameter. If ReturnBuffer is specified and the actual size is
larger than the value specified by ReturnBufferSize, the function fails and a call to GetLastError
returns ERROR_INSUFFICIENT_BUFFER.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
For the Unicode version of this function, the buffer sizes ReturnBufferSize, and ReturnRequiredSize are
specified in number of characters. This number includes the null terminator. For the ANSI version of this
function, the sizes are specified in number of bytes.

If this function is called with a ReturnBuffer of NULL and a ReturnBufferSize of zero, the function puts the

buffer size needed to hold the specified data into the variable pointed to by RequiredSize. If the function
succeeds in this, the return value is TRUE. Otherwise, the return value is FALSE and extended error
information can be obtained by calling GetLastError.

Thus, you can call the function once to get the required buffer size, allocate the necessary memory, and
then call the function a second time to retrieve the data. Using this technique, you can avoid errors due to
an insufficient buffer size.

If SetupQueryInfVersionInformation is called on a Windows NT 3.x INF file, then version information is
generated from the Windows NT 3.x INF file in the following manner:

1. The OptionType key in the Identification section of the Windows NT 3.x INF file is returned as the
Class key value.

2. The FileType key in the Signature section of the Windows NT 3.x INF file becomes the Signature
key value.

3. If the value of the FileType key of the Windows NT 3.x INF file is MICROSOFT_FILE, then the
Provider key value is set to "Microsoft".

The following table summarizes how the information is translated before it is passed into the
SP_INF_INFORMATION structure.

Windows NT 3.x information mapped to Windows 95 or
Windows NT 4.0 data

[Identification]
OptionType = Mouse

[Version]
Class=Mouse

[Signature]
FileType = MICROSOFT_FILE

Signature=MICROSOFT_FILE
(if the FileType is
MICROSOFT_FILE)

Provider="Microsoft"

See Also
SetupGetInfInformation, SetupQueryInfFileInformation

SetupQuerySourceList       

   

[New - Windows NT]

The SetupQuerySourceList function queries the current list of installation sources. The list is built from
the system and user-specific lists, and potentially overridden by a temporary list (see
SetupSetSourceList).

BOOL SetupQuerySourceList(
        DWORD Flags, // specifies the list to query
        PCTSTR **List, // receives an array of sources
        PUINT Count // number of sources in the array
     );

Parameters
Flags

These flags specify which list to query. This parameter can be any combination of the following
values:
SRCLIST_SYSTEM

Query the system list.
SRCLIST_USER

Query the per-user list.

Note If the system and the user lists are both retrieved, they are merged with those items in the
system list that appear first.
If none of the preceding flags are specified, the entire current (merged) list is returned.

SRCLIST_NOSTRIPPLATFORM
Normally, all paths are stripped of a platform-specific component if it is the final component. For
example, a path stored in the registry as f:\mips is returned as f:\. If this flag is specified, the
platform-specific component is not stripped.

List
Supplies a pointer to a caller-supplied variable in which this function returns a pointer to an array of
sources. The caller must free this array with a call to SetupFreeSourceList.

Count
Supplies a pointer to a caller-supplied variable in which this function returns the number of sources in
the list.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupSetSourceList

SetupQueueCopy       

   

[New - Windows NT]

The SetupQueueCopy function adds a single file copy operation to a setup file queue.

BOOL SetupQueueCopy(
        HSPFILEQ QueueHandle, // handle to the file queue
        PCTSTR SourceRootPath, // path to the source file
        PCTSTR SourcePath, // optional, additional path info
        PCTSTR SourceFileName, // name of file to copy
        PCTSTR SourceDescription, // optional, source description
        PCTSTR SourceTagFile, // optional, source media tag file
        PCTSTR TargetDirectory, // directory to copy file to
        PCTSTR TargetFileName, // optional, name for copied file
        DWORD CopyStyle // specifies copy behavior
     );

Parameters
QueueHandle

Supplies a handle to a setup file queue, as returned by SetupOpenFileQueue.
SourceRootPath

Supplies the root of the source for this copy, such as A:\.
SourcePath

This optional parameter supplies the path relative to SourceRootPath where the file can be found.
SourceFileName

Supplies the filename part of the file to be copied.
SourceDescription

This optional parameter supplies a description of the source media to be used during disk prompts.
SourceTagFile

This optional parameter supplies a tag file whose presence at SourceRootPath indicates the
presence of the source media. If not specified, the file itself will be used as the tag file if required.

TargetDirectory
Supplies the directory where the file is to be copied.

TargetFileName
This optional parameter supplies the name of the target file. If not specified, the target file will have
the same name as the source file.

CopyStyle
Flags that control the behavior of the file copy operation. These flags may be a combination of the
following values:
SP_COPY_DELETESOURCE

Delete the source file upon successful copy. The caller is not notified if the delete fails.
SP_COPY_REPLACEONLY

Copy the file only if doing so would overwrite a file at the destination path. The caller is not notified.
SP_COPY_NEWER

Examine each file being copied to see if its version resources indicate that it is not newer than an
existing copy on the target.
The file version information used during version checks is that specified in the dwFileVersionMS

and dwFileVersionLS members of a VS_FIXEDFILEINFO structure, as filled in by the Win32
version functions. If one of the files does not have version resources, or if they have identical
version information, the source file is considered newer.
If the source file is not newer, and CopyMsgHandler is specified, the caller is notified and may
cancel the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_NOOVERWRITE
Check whether the target file exists, and, if so, notify the caller who may veto the copy. If
CopyMsgHandler is not specified, the file is not overwritten.

SP_COPY_NODECOMP
Do not decompress the file. When this flag is set, the target file is not given the uncompressed
form of the source name (if appropriate). For example, copying f:\mips\cmd.ex_ to \\install\temp
results in a target file of \\install\temp\cmd.ex_. If the SP_COPY_NODECOMP flag was not
specified, the file would be decompressed and the target would be called \\install\temp\cmd.exe.
The filename part of DestinationName, if specified, is stripped and replaced with the filename of
the source file. When SP_COPY_NODECOMP is specified, SP_COPY_LANGUAGEAWARE and
SP_COPY_NEWER are ignored.

SP_COPY_LANGUAGEAWARE
Examine each file being copied to see if its language differs from the language of any existing file
already on the target. If so, and CopyMsgHandler is specified, the caller is notified and may cancel
the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_SOURCE_ABSOLUTE
SourceFile is a full source path. Do not look it up in the SourceDisksNames section of the INF file.

SP_COPY_SOURCEPATH_ABSOLUTE
SourcePathRoot is the full path part of the source file. Ignore the relative source specified in the
SourceDisksNames section of the INF file for the source media where the file is located. This flag
is ignored if SP_COPY_SOURCE_ABSOLUTE is specified.

SP_COPY_FORCE_IN_USE
If the target exists, behave as if it is in use and queue the file for copying on the next system
reboot.

SP_COPY_IN_USE_NEEDS_REBOOT
If the file was in use during the copy operation, alert the user that the system needs to be rebooted.

SP_COPY_NO_SKIP
Do not give the user the option to skip a file.

SP_COPY_FORCE_NOOVERWRITE
Check whether the target file exists, and, if so, the file is not overwritten. The caller is not notified.

SP_COPY_FORCE_NEWER
Examine each file being copied to see if its version resources (or timestamps for non-image files)
indicate that it is not newer than an existing copy on the target. If the file being copied is not newer,
the file is not copied. The caller is not notified.

SP_COPY_WARNIFSKIP
If the user tries to skip a file, warn them that skipping a file may affect the installation. (Used for
system-critical files.)

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
If a UNC directory is specified as the target directory of a file copy operation, you must ensure it exists
before the queue is committed. The setup functions do not check for the existence of and do not create
UNC directories. If the target UNC directory does not exist, the file copy will fail.

See Also
SetupQueueCopySection, SetupQueueDefaultCopy, SetupQueueDelete, SetupQueueRename

SetupQueueCopySection       

   

[New - Windows NT]

The SetupQueueCopySection function places all the files in a section of an INF file in a setup queue for
copying. The section must be in the correct Copy Files format and the INF file must contain
SourceDisksFiles and SourceDisksNames sections (or have had the INF files containing those
sections appended).

BOOL SetupQueueCopySection(
        HSPFILEQ QueueHandle, // handle of the file queue
        PCTSTR SourceRootPath, // path to the source media
        HINF InfHandle, // handle to the master INF file
        HINF ListInfHandle, // optional, handle to section INF
        PCTSTR Section, // INF section w/files to copy
        DWORD CopyStyle // specifies copy behavior
     );

Parameters
QueueHandle

Supplies a handle to a setup file queue, as returned by SetupOpenFileQueue.
SourceRootPath

Supplies the root of the source for this copy, such as A:\.
InfHandle

This optional parameter points to the handle of an open INF file that contains the SourceDisksFiles
and SourceDisksNames sections, and, if ListInfHandle is not specified, contains the section names.
If platform-specific sections exist for the user's system (for example, SourceDisksNames.mips and
SourceDisksFiles.mips), the platform-specific section will be used. This handle must be for a
Windows 95- or Windows NT 4.0-style INF file.

ListInfHandle
If specified, supplies a handle to an open INF file that contains the section to queue for copying. If
ListInfHandle is not specified, InfHandle is assumed to contain the section.

Section
Supplies the name of the section to be queued for copy.

CopyStyle
Flags that control the behavior of the file copy operation. These flags may be a combination of the
following values:
SP_COPY_DELETESOURCE

Delete the source file upon successful copy. The caller is not notified if the delete fails.
SP_COPY_REPLACEONLY

Copy the file only if doing so would overwrite a file at the destination path.
SP_COPY_NEWER

Examine each file being copied to see if its version resources indicate that it is not newer than an
existing copy on the target.
The file version information used during version checks is that specified in the dwFileVersionMS
and dwFileVersionLS members of a VS_FIXEDFILEINFO structure, as filled in by the Win32
version functions. If one of the files does not have version resources, or if they have identical
version information, the source file is considered newer.
If the source file is not newer, and CopyMsgHandler is specified, the caller is notified and may

cancel the copy. If CopyMsgHandler is not specified, the file is not copied.
SP_COPY_NOOVERWRITE

Check whether the target file exists, and, if so, notify the caller who may veto the copy. If
CopyMsgHandler is not specified, the file is not overwritten.

SP_COPY_NODECOMP
Do not decompress the file. When this flag is set, the target file is not given the uncompressed
form of the source name (if appropriate). For example, copying f:\mips\cmd.ex_ to \\install\temp
results in a target file of \\install\temp\cmd.ex_. If the SP_COPY_NODECOMP flag was not
specified, the file would be decompressed and the target would be called \\install\temp\cmd.exe.
The filename part of DestinationName, if specified, is stripped and replaced with the filename of
the source file. When SP_COPY_NODECOMP is specified, SP_COPY_LANGUAGEAWARE and
SP_COPY_NEWER are ignored.

SP_COPY_LANGUAGEAWARE
Examine each file being copied to see if its language differs from the language of any existing file
already on the target. If so, and CopyMsgHandler is specified, the caller is notified and may cancel
the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_SOURCE_ABSOLUTE
SourceFile is a full source path. Do not look it up in the SourceDisksNames section of the INF file.

SP_COPY_SOURCEPATH_ABSOLUTE
SourcePathRoot is the full path part of the source file. Ignore the relative source specified in the
SourceDisksNames section of the INF file for the source media where the file is located. This flag
is ignored if SP_COPY_SOURCE_ABSOLUTE is specified.

SP_COPY_FORCE_IN_USE
If the target exists, behave as if it is in use and queue the file for copying on the next system
reboot.

SP_COPY_IN_USE_NEEDS_REBOOT
If the file was in use during the copy operation, alert the user that the system needs to be rebooted.

SP_COPY_NO_SKIP
Do not give the user the option to skip a file.

SP_COPY_FORCE_NOOVERWRITE
Check whether the target file exists, and, if so, the file is not overwritten. The caller is not notified.

SP_COPY_FORCE_NEWER
Examine each file being copied to see if its version resources (or timestamps for non-image files)
indicate that it is not newer than an existing copy on the target. If the file being copied is not newer,
the file is not copied. The caller is not notified.

SP_COPY_WARNIFSKIP
If the user tries to skip a file, warn them that skipping a file may affect the installation. (Used for
system-critical files.)

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
If a UNC directory is specified as the target directory of a file copy operation, you must ensure it exists
before the queue is committed. The setup functions do not check for the existence of and do not create
UNC directories. If the target UNC directory does not exist, the file copy will fail.

See Also
SetupQueueCopy, SetupQueueDefaultCopy

SetupQueueDefaultCopy       

   

[New - Windows NT]

The SetupQueueDefaultCopy function adds a single file to a setup file queue for copying, using the
default source media and destination as specified in an INF file.

BOOL SetupQueueDefaultCopy(
        HSPFILEQQueueHandle, // handle to the file queue
        HINF InfHandle, // handle to the INF file
        PCTSTR SourceRootPath, // path to the source media
        PCTSTR SourceFileName, // name of the file to copy
        PCTSTR TargetFileName, // name of the copied file
        DWORD CopyStyle // specifies copy behavior
     );

Parameters
QueueHandle

Supplies a handle to a setup file queue, as returned by SetupOpenFileQueue.
InfHandle

Supplies a handle to an open INF file that contains the SourceDisksFiles and SourceDisksNames
sections. If platform-specific sections exist for the user's system (for example,
SourceDisksNames.mips and SourceDisksFiles.mips), the platform-specific section will be used.
This handle must be for a Windows 95- or Windows NT 4.0-style INF file.

SourceRootPath
Supplies the root directory of the source for this copy such as A:\.

SourceFileName
Supplies the filename of the file to be copied.

TargetFileName
Supplies the filename of the target file.

CopyStyle
Flags that control the behavior of the file copy operation. These flags may be a combination of the
following values:
SP_COPY_DELETESOURCE

Delete the source file upon successful copy. The caller is not notified if the delete fails.
SP_COPY_REPLACEONLY

Copy the file only if doing so would overwrite a file at the destination path.
SP_COPY_NEWER

Examine each file being copied to see if its version resources indicate that it is not newer than an
existing copy on the target.
The file version information used during version checks is that specified in the dwFileVersionMS
and dwFileVersionLS members of a VS_FIXEDFILEINFO structure, as filled in by the Win32
version functions. If one of the files does not have version resources, or if they have identical
version information, the source file is considered newer.
If the source file is not newer, and CopyMsgHandler is specified, the caller is notified and may
cancel the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_NOOVERWRITE
Check whether the target file exists, and, if so, notify the caller who may veto the copy. If
CopyMsgHandler is not specified, the file is not overwritten.

SP_COPY_NODECOMP
Do not decompress the file. When this flag is set, the target file is not given the uncompressed
form of the source name (if appropriate). For example, copying f:\mips\cmd.ex_ to \\install\temp
results in a target file of \\install\temp\cmd.ex_. If the SP_COPY_NODECOMP flag was not
specified, the file would be decompressed and the target would be called \\install\temp\cmd.exe.
The filename part of DestinationName, if specified, is stripped and replaced with the filename of
the source file. When SP_COPY_NODECOMP is specified, SP_COPY_LANGUAGEAWARE and
SP_COPY_NEWER are ignored.

SP_COPY_LANGUAGEAWARE
Examine each file being copied to see if its language differs from the language of any existing file
already on the target. If so, and CopyMsgHandler is specified, the caller is notified and may cancel
the copy. If CopyMsgHandler is not specified, the file is not copied.

SP_COPY_SOURCE_ABSOLUTE
SourceFile is a full source path. Do not look it up in the SourceDisksNames section of the INF file.

SP_COPY_SOURCEPATH_ABSOLUTE
SourcePathRoot is the full path part of the source file. Ignore the relative source specified in the
SourceDisksNames section of the INF file for the source media where the file is located. This flag
is ignored if SP_COPY_SOURCE_ABSOLUTE is specified.

SP_COPY_FORCE_IN_USE
If the target exists, behave as if it is in use and queue the file for copying on the next system
reboot.

SP_COPY_IN_USE_NEEDS_REBOOT
If the file was in use during the copy operation, alert the user that the system needs to be rebooted.

SP_COPY_NO_SKIP
Do not give the user the option to skip a file.

SP_COPY_FORCE_NOOVERWRITE
Check whether the target file exists, and, if so, the file is not overwritten. The caller is not notified.

SP_COPY_FORCE_NEWER
Examine each file being copied to see if its version resources (or timestamps for non-image files)
indicate that it is not newer than an existing copy on the target. If the file being copied is not newer,
the file is not copied. The caller is not notified.

SP_COPY_WARNIFSKIP
If the user tries to skip a file, warn them that skipping a file may affect the installation. (Used for
system-critical files.)

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
If a UNC directory is specified as the target directory of a file copy operation, you must ensure it exists
before the queue is committed. The setup functions do not check for the existence of and do not create
UNC directories. If the target UNC directory does not exist, the file copy will fail.

The default destination used by this function is specified by the DefaultDestDir key in the
DestinationDirs section of an INF file.

See Also
SetupQueueCopy, SetupQueueCopySection

SetupQueueDelete       

   

[New - Windows NT]

The SetupQueueDelete function places an individual file delete operation on a setup file queue.

BOOL SetupQueueDelete(
        HSPFILEQ QueueHandle, // handle to the file queue
        PCTSTR PathPart1, // path to the file to delete
        PCTSTR PathPart2 // optional, additional path info
     );

Parameters
QueueHandle

Supplies a handle to a setup file queue, as returned by SetupOpenFileQueue.
PathPart1

Supplies the first part of the path of the file to be deleted. If PathPart2 is not specified, PathPart1 is
the full path of the file to be deleted.

PathPart2
This optional parameter supplies the second part of the path of the file to be deleted. This is
appended to PathPart1 to form the full path of the file to be deleted. The function checks for and
collapses duplicated path separators when it combines PathPart1 and PathPart2.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
Since delete operations are assumed to take place on fixed media, the user will not be prompted when
the queue is committed.

See Also
SetupQueueCopy, SetupQueueDeleteSection, SetupQueueRename

SetupQueueDeleteSection       

   

[New - Windows NT]

The SetupQueueDeleteSection function queues all the files in a section of an INF file for deletion. The
section must be in the correct Delete Files format and the INF file must contain a DestinationDirs
section.

BOOL SetupQueueDeleteSection(
        HSPFILEQ QueueHandle, // handle to the file queue
        HINF InfHandle, // handle to the INF file
        HINF ListInfHandle, // optional, handle to section INF
        PCTSTR Section // INF section that lists the files to delete
     );

Parameters
QueueHandle

Supplies a handle to a setup file queue, as returned by SetupOpenFileQueue.
InfHandle

Supplies a handle to an open INF file that contains the DestinationDirs section. If ListInfHandle is not
specified, InfHandle contains the section name. This handle must be for a Windows 95- or Windows
NT 4.0-style INF file.

ListInfHandle
This optional parameter points to the handle of an open INF file that contains the section to queue for
deletion. If ListInfHandle is not specified, InfHandle is assumed to contain the section name.

Section
Supplies the name of the section to be queued for deletion.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupQueueCopySection, SetupQueueDelete, SetupQueueRenameSection

SetupQueueRename       

   

[New - Windows NT]

The SetupQueueRename function places an individual file rename operation on a setup file queue.

BOOL SetupQueueRename(
        HSPFILEQ QueueHandle, // handle to the file queue
        PCTSTR SourcePath, // path to the file to rename
        PCTSTR SourceFileName, // optional, source filename
        PCTSTR TargetPath, // optional, new path for file
        PCTSTR TargetFileName // optional, new name for file
     );

Parameters
QueueHandle

Supplies a handle to a setup file queue, as returned by SetupOpenFileQueue.
SourcePath

Supplies the source path of the file to be renamed. If SourceFileName is not specified, SourcePath is
assumed to be the full path.

SourceFileName
This optional parameter supplies the filename part of the file to be renamed. If not specified,
SourcePath is the full path.

TargetPath
This optional parameter supplies the target directory and the rename operation is actually a mover
operation. If TargetPath is not specified, the file is renamed but remains in its current location.

TargetFileName
This optional parameter supplies the name of the new name for the source file.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
Since rename operations are assumed to take place on fixed media, the user will not be prompted when
the queue is committed.

See Also
SetupQueueDelete, SetupQueueCopy, SetupQueueRenameSection

SetupQueueRenameSection       

   

[New - Windows NT]

The SetupQueueRenameSection function queues a section in an INF file for renaming. The section
must be in the correct rename list section format and the INF file must contain a DestinationDirs section.

BOOL SetupQueueRenameSection(
        HSPFILEQ QueueHandle, // handle to the file queue
        HINF InfHandle, // handle to the INF file
        HINF ListInfHandle, // optional, section INF handle
        PCTSTR Section // section that lists the files to rename
     );

Parameters
QueueHandle

Supplies a handle to a setup file queue, as returned by SetupOpenFileQueue.
InfHandle

A handle to the INF file that contains the DestinationDirs section. If ListInfHandle is not specified,
InfHandle contains the section name. This handle must be for a Windows 95- or Windows NT 4.0-
style INF file.

ListInfHandle
This optional parameter supplies a handle to an INF file that contains the section to queue for
renaming. If ListInfHandle is not specified, InfHandle is assumed to contain the section name.

Section
Supplies the name of the section to be queued for renaming.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
You cannot queue file moves with SetupQueueRenameSection because the form of a rename list
section limits section renaming to within the same directory.

See Also
SetupQueueCopySection, SetupQueueDeleteSection, SetupQueueRename

SetupRemoveFileLogEntry       

   

[New - Windows NT]

The SetupRemoveFileLogEntry function removes an entry or section from a file log.

BOOL SetupRemoveFileLogEntry(
        HSPFILELOG FileLogHandle, // handle to the log file
        PCTSTR LogSectionName, // optional, name to group by
        PCTSTR TargetFileName // optional, name in target dir
     );

Parameters
FileLogHandle

Supplies the handle to the file log as returned by SetupInitializeFileLog. The caller must not have
passed SPFILELOG_QUERYONLY when the log file was initialized.

LogSectionName
This optional parameter supplies the name for a logical grouping of names within the log file.
Required for non-system logs. Otherwise, LogSectionName is optional.

TargetFileName
This optional parameter supplies the name of the file as it exists on the target. This name should be in
whatever format is meaningful to the caller. If not specified, the section specified by LogSectionName
is removed. The main section for Windows NT files cannot be removed.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupLogFile

SetupRemoveFromSourceList       

   

[New - Windows NT]

The SetupRemoveFromSourceList function removes a value from the list of installation sources for
either the current user or the system. The system and user lists are merged at run time.

BOOL SetupRemoveFromSourceList(
        DWORD Flags, // the list to remove the source from
        PCTSTR Source // the source to remove
     );

Parameters
Flags

These flags specify which list to remove the source from. This parameter can be any combination of
the following values:
SRCLIST_SYSTEM

Remove the source to the per-system list. The caller must be an administrator.
SRCLIST_USER

Remove the source to the per-user list.
SRCLIST_SYSIFADMIN

If the caller is an administrator, the source is removed from the per-system list; if the caller is not an
administrator, the source is removed from the per-user list for the current user.

Note    If a temporary list is currently in use (see SetupSetSourceList), the preceding flags are
ignored and the source is removed from the temporary list.

SRCLIST_SUBDIRS
Remove all subdirectories of the source.

Source
Pointer to the source to remove from the list.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupAddToSourceList, SetupSetSourceList

SetupRenameError       

   

[New - Windows NT]

The RenameError function generates a dialog box that informs the user of a file renaming error.

UINT SetupRenameError(
        HWND hwndParent, // parent window for this dialog box
        PCTSTR DialogTitle, // optional, title for this dialog box
        PCTSTR SourceFile, // source file of the rename error
        PCTSTR TargetFile, // target file of the rename error
        UINT Win32ErrorCode, // the error encountered
        DWORD Style // specifies formatting for this dialog box
   );

Parameters
hwndParent

Handle to the parent window for this dialog box.
DialogTitle

This optional parameter points to a null-terminated string specifying the error dialog box title. If this
parameter is NULL, the default title of "Rename Error" (localized) is used.

SourceFile
Pointer to a null-terminated string specifying the full path of the source file on which the operation
failed.

TargetFile
Pointer to a null-terminated string specifying the full path of the target file on which the operation
failed.

Win32ErrorCode
The Win32 error code encountered during the file operation. For information about Win32 error codes,
see the WINERROR.H file included with the Win32 SDK.

Style
Specifies flags that control display formatting and behavior of the dialog box. This parameter can be
one of the following flags:
IDF_NOBEEP

Prevent the dialog box from beeping to get the user's attention when it first appears.
IDF_NOFOREGROUND

Prevent the dialog box from becoming the foreground window.

Return Values
This function returns one of the following values:

DPROMPT_SUCCESS
The user retried the operation and it was successful.

DPROMPT_CANCEL
The user clicked on the Cancel button.

DPROMPT_SKIPFILE
The user clicked on the Skip File button.

DPROMPT_OUTOFMEMORY
There is insufficient memory to process the request.

See Also
SetupCopyError, SetupDeleteError, SetupPromptForDisk

SetupScanFileQueue       

   

[New - Windows NT]

The SetupScanFileQueue function scans a setup file queue, performing an operation on each node in its
copy list. The operation is specified by a set of flags. This function can be called either before or after the
queue has been committed

BOOL SetupScanFileQueue(
        HSPFILEQ FileQueue, // handle to the file queue
        DWORD Flags, // control scan operation
        HWND Window, // optional, specifies a parent window
        PSP_FILE_CALLBACK CallbackRoutine, // optional, callback routine to use
        PVOID CallbackContext, // optional, callback routine context
        PDWORD Result // receives scan result
     );

Parameters
FileQueue

Supplies a handle to the setup file queue whose copy list is to be scanned/iterated.
Flags

Values that control how the scan operation is carried out. Flags can be a combination of the following
values:
SPQ_SCAN_FILE_PRESENCE

Determine whether all target files in the copy queue are already present on the target.
SPQ_SCAN_USE_CALLBACK

For each node of the queue, call the callback routine. If the callback routine returns non-0, queue
processing stops and SetupScanFileQueue returns FALSE immediately.

Either SPQ_SCAN_FILE_PRESENCE, or SPQ_SCAN_USE_CALLBACK must be specified.
SPQ_INFORM_USER

If this flag is specified and all the files in the queue pass the presence/validity check,
SetupScanFileQueue informs the user that the operation being attempted requires files but they
are already present on the target. This flag is ignored if SPQ_SCAN_FILE_PRESENCE is not
specified.

Window
This optional parameter specifies the window to own dialog boxes that are presented. The Window
parameter is not used if the Flags parameter does not contain SPQ_SCAN_FILE_PRESENCE or if
Flags does not contain SPQ_SCAN_INFORM_USER.

CallbackRoutine
This optional parameter specifies a callback function to be called on each node of the copy queue.
The notification code passed to the callback function is SPFILENOTIFY_QUEUESCAN. This
parameter is required if Flags includes SPQ_SCAN_USE_CALLBACK.

Note    You must supply the callback routine specified by CallbackRoutine. The default queue
callback routine does not support SetupScanFileQueue.

CallbackContext
This optional parameter points to a context that contains caller-defined data passed to the callback
routine pointed to by CallbackRoutine.

Result
Supplies a pointer to a caller-supplied variable in which this function returns the result of the scan
operation.

Return Values
The function returns TRUE if all nodes in the queue were processed.

If the SPQ_SCAN_USE_CALLBACK flag was set, the value in Result is 0. The callback routine specified
by CallbackRoutine is sent the notification SPFILENOTIFY_QUEUESCAN. CallbackRoutine.Param1
specifies a pointer to an array that contains the target path information. The pointer has been cast to an
unsigned integer and must be recast to an TCHAR array of MAX_PATH elements before a callback
routine can access the information. CallbackRoutine.Param2 is set to SPQ_DELAYED_COPY if the
current queue node is in use and cannot be copied until the system is rebooted. Otherwise,
CallbackRoutine.Param2 takes the value 0.

If SPQ_SCAN_USE_CALLBACK was not set, Result indicates whether the queue passed the
presence/validity check as shown in the following table.

Result Meaning
0 The queue failed the check or it passed the check

but SPQ_SCAN_INFORM_USER was specified and
the user wants new copies of the files.

1 The queue passed the check and, if
SPQ_SCAN_INFORM_USER was specified, the
user indicated that copying is not required. The copy
queue is empty and there are no elements on the
delete or rename queues, so the caller can skip
queue commit.

2 The queue passed the check and, if
SPQ_SCAN_INFORM_USER was specified, the
user indicated that copying is not required. The copy
queue is empty but there are elements on the delete
or rename queues, so the call cannot skip queue
commit.

The function returns FALSE if an error occurred or the callback function returned non-0. If Result is non-0,
it is the value returned by the callback function that stopped queue processing. If Result is 0, extended
error information can be retrieved by a call to GetLastError.

See Also
SetupCommitFileQueue, SetupDefaultQueueCallback

SetupSetDirectoryId       

   

[New - Windows NT]

The SetupSetDirectoryId function associates a directory identifier in an INF file with a particular
directory.

BOOL SetupSetDirectoryId(
        HINF InfHandle, // handle to the INF file
        DWORD Id, // optional, DIRID to assign to Directory
        PCTSTR Directory // optional, directory to map to identifier
     );

Parameters
InfHandle

Handle for a loaded INF file.
Id

This optional parameter supplies the directory identifier (DIRID) to use for the association. This DIRID
must be greater than or equal to DIRID_USER. If an association already exists for this DIRID, it is
overwritten. If Id is not specified, the Directory parameter is ignored and the current set of user-
defined DIRIDs is deleted.

Directory
This optional parameter supplies the directory path to associate with Id. If Directory is NULL, any
directory associated with Id is unassociated. No error results if Id is not currently associated with a
directory.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

ERROR_NOT_ENOUGH_MEMORY
Indicates that a memory allocation failed.

ERROR_INVALID_PARAMETER
The Id parameter is not greater than or equal to DIRID_USER or Directory is not a valid string.

Remarks
SetupSetDirectoryId can be used prior to queueing file copy operations, to specify a target location that
is only known at runtime.

After setting the directory identifier, this function traverses all appended INF files, and, if any of them have
unresolved string substitutions, attempts to re-apply string substitution to them based on the new DIRID
mapping. Because of this, some INF values may change after calling SetupSetDirectoryId.

DIRID_ABSOLUTE_16BIT is not a valid value for Id. This ensures compatibility with 16-bit setupx.

SetupSetPlatformPathOverride       

   

[New - Windows NT]

The SetupSetPlatformPathOverride function sets the platform path override or removes it if none is
specified.

BOOL SetupSetPlatformPathOverride(
        PCTSTR Override // optional, platform replacement string
     );

Parameters
Override

This optional parameter points to a string that contains the replacement platform information. For
example, "mips", "alpha", "ppc", or "i386".

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

If GetLastError returns ERROR_NOT_ENOUGH_MEMORY, SetupSetPlatformPathOverride was
unable to store the Override string.

Remarks
SetPlatformPathOverride is used to change the source path when queuing files. If a platform path
override has been set by a call to SetPlatformPathOverride, any setup function that queues file copy
operations will examine the final component of the source path and if the final component matches the
name of the user's platform, replace it with the override string set by SetPlatformPathOverride.

For example, consider a MIPS-platform machine where the platform has been set to Alpha by a call to
SetPlatformPathOverride. After the platform path override has been set, a file copy operation is queued
with a source path of \\foo\bar\baz\mips\x.exe, the path will be changed to \\foo\bar\baz\alpha\x.exe.

The paths of file copy operations queued before the path override is set are not changed.

See Also
SetupSetDirectoryId

SetupSetSourceList       

   

[New - Windows NT]

The SetupSetSourceList function allows the caller to set the list of installation sources for either the
current user or the system (common to all users).

BOOL SetupSetSourceList(
        DWORD Flags, // type of source list
        PCTSTR *SourceList, // array of sources listed
        UINT SourceCount // number of sources in the array
     );

Parameters
Flags

These flags specify the type of list. This parameter can be a combination of the following values:
SRCLIST_SYSTEM

The list is the per-system Most Recently Used (MRU) list stored in the registry. The caller must be
a member of the administrators local group.

SRCLIST_USER
The list is the per-user MRU list stored in the registry.

SRCLIST_TEMPORARY
The specified list is temporary and will be the only list accessible to the current process until
SetupCancelTemporarySourceList is called or SetSourceList is called again.
Important
If a temporary list is set, sources will not be added to or deleted from the system or user lists, even
if subsequent calls to SetupAddToSourceList or SetupRemoveFromSourceList explicitly
specify those lists.

Note One of the SRCLIST_SYSTEM, SRCLIST_USER, or SRCLIST_TEMPORARY flags must be
specified. SRCLIST_NOBROWSE

The user is not allowed to add or change sources when SetupPromptForDisk is used. This flag is
typically used in combination with the SRCLIST_TEMPORARY flag.

SourceList
Pointer to an array of strings to use as the source list, as specified by the Flags parameter.

SourceCount
Specifies the number of elements in the array pointed to by SourceList.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupAddToSourceList, SetupCancelTemporarySourceList, SetupRemoveFromSourceList   

SetupTermDefaultQueueCallback       

   

[New - Windows NT]

The SetupTermDefaultQueueCallback function is called after a queue has finished committing. It frees
resources allocated by previous calls to SetupInitDefaultQueueCallback or
SetupInitDefaultQueueCallbackEx.

VOID SetupTermDefaultQueueCallback(
        PVOID Context // context used by the default callback routine
     );

Parameters
Context

Supplies a pointer to the context used by the default callback routine.

Return Values
Does not return a value.

See Also
SetupInitDefaultQueueCallback, SetupInitDefaultQueueCallbackEx

SetupTerminateFileLog       

   

[New - Windows NT]

The SetupTerminateFileLog function releases resources associated with a file log.

BOOL SetupTerminateFileLog(
        HSPFILELOG FileLogHandle // handle of the log file to close
     );

Parameter
FileLogHandle

Supplies the handle to the log file as returned by a call to SetupInitializeFileLog.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also
SetupLogFile, SetupInitializeFileLog

Notifications
Notifications are values that a setup function sends to a callback routine to specify a state or event. Two
parameters, Param1 and Param2, are sent with the notification, and contain additional information
relevant to the notification.

The callback routine processes the notification and returns an unsigned integer to the setup function.
Depending on the setup function, you can use this value may be used to specify an operation or user
selection, or you may ignore it.

The setup functions send notifications to callback routines using the following syntax.

MsgHandler(//the specified callback routine
 Context, //context used by the callback routine
 Notification, //notification code
 Param1, //additional notification information
 Param2 //additional notification information
);

The Context parameter is a void pointer to a context variable or structure that the callback routine can use
to store information that must persist between subsequent calls to the callback routine.

Because the callback routine specifies the context's implementation, and it is never referenced or altered
by the setup functions, the context is not documented in the reference material for the notification
messages that follow.

The Notification parameter specifies an unsigned integer value for an event or state that causes the setup
function to call the callback routine.

Param1 and Param2 are optional parameters that can contain additional information relevant to the
notification. These parameters are unsigned integers. If Param1 or    Param2 return information that is not
an unsigned integer, it will be cast to an unsigned integer and must be recast to its original data type
before it can be used by the callback routine.

Note    The following notifications represent every notification used by the setup functions. Individual
functions will use a subset of these notifications. In other words, not every notification is used by
every function.

The following notifications are used by the setup functions.

SPFILENOTIFY_COPYERROR An error occurred during a file
copying operation.

SPFILENOTIFY_DELETEERROR An error occurred during a file
deletion operation.

SPFILENOTIFY_ENDCOPY A file copying operation has
ended.

SPFILENOTIFY_ENDDELETE A file deletion operation has
ended.

SPFILENOTIFY_ENDQUEUE The queue has finished
committing.

SPFILENOTIFY_ENDRENAME A file rename operation has
ended.

SPFILENOTIFY_ENDSUBQUEUE A subqueue (either copy,

rename or delete) has ended.
SPFILENOTIFY_FILEEXTRACTED The file has been extracted from

the cabinet.
SPFILENOTIFY_FILEINCABINET A file is encountered in the

cabinet.
SPFILENOTIFY_FILEOPDELAYED The file was in use, and the

current operation has been
delayed until the system is
rebooted.

SPFILENOTIFY_LANGMISMATCH The language of the current
operation does not match the
system language.

SPFILENOTIFY_NEEDMEDIA New source media is needed.
SPFILENOTIFY_NEEDNEWCABIN
ET

The current file is continued in
the next cabinet.

SPFILENOTIFY_QUEUESCAN A node in the file queue has
been scanned.

SPFILENOTIFY_RENAMEERROR An error occurred during a file
renaming operation.

SPFILENOTIFY_STARTCOPY A file copy operation has started.
SPFILENOTIFY_STARTDELETE A file delete operation has

started.
SPFILENOTIFY_STARTQUEUE The queue has started to

commit.
SPFILENOTIFY_STARTRENAME A file rename operation has

started.
SPFILENOTIFY_STARTSUBQUEU
E

A subqueue (either copy,
rename or delete) has started.

SPFILENOTIFY_TARGETEXISTS A copy of the specified file
already exists on the target.

SPFILENOTIFY_TARGETNEWER A newer version of the specified
file exists on the target.

SPFILENOTIFY_COPYERROR       

   

[New - Windows NT]

The SPFILENOTIFY_COPYERROR notification is sent to the callback routine if an error occurs during a
file copy operation.

SPFILENOTIFY_COPYERROR
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) ReturnBuffer;

Parameters

Param1
Pointer to a FILEPATHS structure.

Param2
Pointer to a buffer, of size MAX_PATH TCHAR elements, that stores new path information specified
by the user.

Return Values
The callback should return one of the following values.

Value Meaning
FILEOP_ABORT Queue processing should be cancelled.

SetupCommitFileQueue returns FALSE
and GetLastError returns extended error
information such as ERROR_CANCELLED
(if the user canceled) or
ERROR_NOT_ENOUGH_MEMORY.

FILEOP_NEWPATH Retry the copy operation using the path the
callback function placed in the buffer
pointed to by the Param2 parameter. The
callback routine should ensure that the path
does not overflow the buffer size of a
TCHAR array of MAX_PATH elements.

FILEOP_RETRY The user chose to attempt the the copy
operation again.

FILEOP_SKIP The user chose to skip the file copy
operation.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_DELETEERROR       

   

[New - Windows NT]

The SPFILENOTIFY_DELETEERROR notification is sent to the callback routine if an error occurs during
a file delete operation.

SPFILENOTIFY_DELETEERROR
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) 0;

Parameters

Param1
Pointer to a FILEPATHS structure.

Param2
Unused.

Return Values
The callback routine should return one of the following values.

Value Meaning
FILEOP_ABORT Queue processing should be

canceled. SetupCommitFileQueue
returns FALSE and GetLastError
returns extended error information
such as ERROR_CANCELLED (if
the user canceled) or
ERROR_NOT_ENOUGH_MEMOR
Y.

FILEOP_RETRY The user chose to attempt the
delete operation again.

FILEOP_SKIP The user chose to skip the file
delete operation.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_ENDCOPY       

   

[New - Windows NT]

The SPFILENOTIFY_ENDCOPY notification is passed to the callback function when the queue
completes a copy operation. This notification is sent even if the user cancels or if an error occurs.

SPFILENOTIFY_ENDCOPY
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) 0;

Parameters

Param1
Pointer to a FILEPATHS structure. The Win32Error member of the FILEPATHS structure indicates
the outcome of the copy operation.

Param2
Unused.

Return Values
The return code is ignored.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_ENDDELETE       

   

[New - Windows NT]

The SPFILENOTIFY_ENDDELETE notification is returned to the callback routine when a queue
completes a delete operation. This notification is sent even if the user cancels or if an error occurs.

SPFILENOTIFY_ENDDELETE
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) 0;

Parameters

Param1
Pointer to a FILEPATHS structure. The Win32Error member of the FILEPATHS structure indicates
the outcome of a copy operation.

Param2
Unused.

Return Values
The return code is ignored.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_ENDQUEUE       

   

[New - Windows NT]

The SPFILENOTIFY_ENDQUEUE notification is sent to the callback routine when all of the queued
operations have been completed.

SPFILENOTIFY_ENDQUEUE
 Param1 = (UINT) Result;
 Param2 = (UINT) 0;

Parameters

Param1
TRUE if the queue was processed successfully, FALSE otherwise.

Param2
Unused.

Return Values
The return value is ignored.

See Also
SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_ENDRENAME       

   

[New - Windows NT]

The SPFILENOTIFY_ENDRENAME notification is sent to the callback routine when the queue completes
a rename operation. This notification is sent even if the user cancels or if an error occurs.

SPFILENOTIFY_ENDRENAME
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) 0;

Parameters

Param1
Pointer to a FILEPATHS structure. The Win32Error member of the FILEPATHS structure indicates
the outcome of the copy operation.   

Param2
Unused.

Return Values
The return value is ignored.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_ENDSUBQUEUE       

   

[New - Windows NT]

The SPFILENOTIFY_ENDSUBQUEUE notification is sent to the callback function when the queue
completes all the operations in the delete, rename, or copy subqueue.

SPFILENOTIFY_ENDSUBQUEUE
 Param1 = (UINT) SubQueue;
 Param2 = (UINT) 0;

Parameters

Param1
Specifies which subqueue has been completed. This parameter can be one of the following values
FILEOP_DELETE, FILEOP_RENAME, or FILEOP_COPY.

Param2
Unused.

Return Values
The return value is ignored.

See Also
SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_FILEEXTRACTED       

   

[New - Windows NT]

The SPFILENOTIFY_FILEEXTRACTED notification is sent to a callback routine by SetupIterateCabinet
to indicate either that a file was extracted from the cabinet or that an extraction failed and cabinet
processing has been canceled.

SPFILENOTIFY_FILEEXTRACTED
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) 0;

Parameters

Param1
Pointer to a FILEPATHS structure that contains path information for the extracted file.    The
SourceFile member of the FILEPATHS structure contains the full Win32 source path of the cabinet.
The TargetFile member supplies the full Win32 target path of the file to be installed on the system.

Param2
Unused.

Return Values
The cabinet callback routine should return one of the following values.

Value Meaning
NO_ERROR No error was encountered, continue

processing the cabinet.
ERROR_XXX An error of the specified type occurred.

SetupIterateCabinet will return
FALSE. GetLastError will return the
specified error code.

Note    There is no default cabinet callback routine supplied with the Setup API. Your setup
application should supply a callback routine to handle the notifications sent by the
SetupIterateCabinet function.

See Also
FILEPATHS, SetupIterateCabinet

SPFILENOTIFY_FILEINCABINET       

   

[New - Windows NT]

The SPFILENOTIFY_FILEINCABINET notification is sent to a callback routine by SetupIterateCabinet
for each file found in the cabinet. The callback routine must return a value indicating whether to extract
the file.

SPFILENOTIFY_FILEINCABINET
 Param1 = (UINT) FileInCabinetInfo;
 Param2 = (UINT) CabinetFile;

Parameters

Param1
Specifies the address to a FILE_IN_CABINET_INFO structure that contains information about the file
in the cabinet.

Param2
Pointer to a null-terminated string that contains the filename of the cabinet file.

Return Values
Your callback routine should return one of the following.

Value Meaning
FILEOP_SKIP Do not extract the file, skip it.
FILEOP_DOIT Extract the file.

If your callback routine returns FILEOP_DOIT, the name to use for the extracted file should be specified in
the FullTargetName member of the FILE_IN_CABINET_INFO structure passed to the routine in Param1.

Note    There is no default cabinet callback routine. The setup application should supply a callback
routine to handle the notifications sent by SetupIterateCabinet.

See Also
FILE_IN_CABINET_INFO,
SetupIterateCabinet

SPFILENOTIFY_FILEOPDELAYED       

   

[New - Windows NT]

The SPFILENOTIFY_FILEOPDELAYED notification is sent by SetupInstallFileEx or
SetupCommitFileQueue to a callback routine when a file operation was delayed because the file was in
use. The operation will be processed the next time the system is rebooted.

SPFILENOTIFY_FILEOPDELAYED
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) 0;

Parameters

Param1
Pointer to a FILEPATHS structure.
If the delayed operation is a file copy operation, the FILEPATHS structure contains the following
information.

FILEPATH member Value
Win32Error NO_ERROR
Flags FILEOP_COPY
Source The full Win32 path of the

temporary file.
This temporary file will be copied
to the target directory when the
system is rebooted.
The setup functions automatically
generate a path for the temporary
file.

Target Specifies the full Win32 path of
the actual target file.

If the delayed operation is a file delete operation, the FILEPATHS structure contains the following
information.

FILEPATH member Value
Win32Error NO_ERROR
Flags FILEOP_DELETE
Source NULL
Target Specifies the full Win32 path of

the file to be deleted.

Param2
Is not used.

Return Values
The return value is ignored.

See Also
FILEPATHS, SetupCommitFileQueue, SetupInstallFile, SetupInstallFileEx,

SetupInstallFromInfSection

SPFILENOTIFY_LANGMISMATCH       

   

[New - Windows NT]

The SPFILENOTIFY_LANGMISMATCH notification is sent to the callback routine if the language of the
file to be copied does not match the language of an existing target file. It can be sent to the callback
routine alone or combined, by using the OR operator, with SPFILENOTIFY_TARGETEXISTS and/or
SPFILENOTIFY_TARGETNEWER.

SPFILENOTIFY_LANGMISMATCH
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) LanguageInfo;

Parameters

Param1
Pointer to a FILEPATHS structure that contains information about the paths of the source and target
files.

Param2
An unsigned 32-bit value that contains information about the mis-matched languages. This DWORD
stores the language identifier of the source file in the low word, and the language identifier of the
existing target file in the high word.

Return Values
The callback routine should return one of the following values.

Value Meaning
TRUE Copy the file and overwrite the existing file.
FALSE Skip the copy operation. Do not overwrite the

existing file.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback, SetupInstallFile,
SetupInstallFileEx, SetupInstallFromInfSection

SPFILENOTIFY_NEEDMEDIA       

   

[New - Windows NT]

The SPFILENOTIFY_NEEDMEDIA notification is sent to the callback routine when new media or a new
cabinet file is required.

SPFILENOTIFY_NEEDMEDIA
 Param1 = (UINT) SourceMediaInfo;
 Param2 = (UINT) NewPathInfo;

Parameters

Param1
Pointer to a SOURCE_MEDIA structure.

Param2
Pointer to a character array to store new path information supplied by the user.    The buffer size is a
TCHAR array of MAX_PATH elements. The path information returned by your setup application
should not exceed this size.

Return Values
The callback routine should return one of the following.

Value Meaning
FILEOP_NEWPATH The media is present and the

requested file is available at the
win32 path specified in the buffer
pointed to by Param2.

FILEOP_SKIP Skip the requested file
FILEOP_ABORT Abort queue processing. The

SetupCommitFileQueue function
returns FALSE. GetLastError
returns extended error
information, such as
ERROR_CANCELLED if the user
canceled.

FILEOP-DOIT The media is available.

See Also
SetupCommitFileQueue, SetupDefaultQueueCallback, SOURCE_MEDIA

SPFILENOTIFY_NEEDNEWCABINET       

   

[New - Windows NT]

The SPFILENOTIFY_NEEDNEWCABINET notification is sent by SetupIterateCabinet to indicate that
the current file continues in another cabinet. Your callback routine can then call SetupPromptForDisk, or
create its own dialog box to prompt the user to insert the next disk.

SPFILENOTIFY_NEEDNEWCABINET
 Param1 = (UINT) CabinetInfo;
 Param2 = (UINT) NewPath;

Parameters

Param1
Pointer to a CABINET_INFO structure that contains information about the cabinet and the file to be
extracted.

Param2
If the callback returns NO_ERROR, this parameter is a pointer to a null-terminated string. If the string
is not empty, it specifies a new path to the cabinet.

Return Values
Your routine should return one of the following values.

Value Meaning
NO_ERROR No error was encountered, continue

processing the cabinet.
ERROR_XXX An error of the specified type occurred.

The SetupIterateCabinet function will
return FALSE, and the specified error
code will be returned by a call to
GetLastError.

Note    There is no default cabinet callback routine; thus, you must supply a callback routine to
handle the notifications sent by SetupIterateCabinet.

Remarks
If the callback routine returns NO_ERROR, SetupIterateCabinet checks the buffer pointed to by Param2.
If the buffer is not empty, then it contains a new source path. If the buffer is empty, the source path is
assumed to be unchanged.

Your callback function should ensure that the cabinet is accessible before it returns, calling the
SetupPromptForDisk function, if new media needs to be inserted.

See Also
CABINET_INFO, SetupIterateCabinet

SPFILENOTIFY_QUEUESCAN       

   

[New - Windows NT]

The SPFILENOTIFY_QUEUESCAN notification is sent to a callback routine by SetupScanFileQueue for
each node in the copy subqueue of the file queue. This only occurs if the SetupScanFileQueue function
was called specifiying the flag SPQ_SCAN_USE_CALLBACK.

SPFILENOTIFY_QUEUESCAN
 Param1 = (UINT) TargetPath;
 Param2 = (UINT) DelayFlag;

Parameters

Param1
Specifies a null-terminated string that specifies the target path information for the file queued in the
current node.

Param2
If the file in the current node of the queue is in use, Param2 takes the value SPQ_DELAYED_COPY.
If the file is not in use, the value is zero.

Return Values
The callback routine should return a Win32 error code.

If the callback routine returns NO_ERROR, the queue scan continues.    If the routine returns any other
Win32 error code, the queue scan aborts and SetupScanFileQueue returns FALSE.

Note    This notification is not handled by the SetupDefaultQueueCallback function.

See Also
SetupScanFileQueue

SPFILENOTIFY_RENAMEERROR       

   

[New - Windows NT]

The SPFILENOTIFY_RENAMEERROR notification is sent to the callback routine if an error occurs during
a file rename operation.

SPFILENOTIFY_RENAMEERROR
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) 0;

Parameters

Param1
Pointer to a FILEPATHS structure. The Win32Error member of the FILEPATHS structure specifies
the error that occurred during the rename operation.

Param2
Unused.

Return Values
The callback routine should return one of the following.

Value Meaning
FILEOP_RETRY The user chose to attempt the

rename operation again.
FILEOP_SKIP The user chose to skip the file

rename operation.
FILEOP_ABORT Stop the queue commit.

SetupCommitFileQueue
returns FALSE. GetLastError
returns extended error
information such as
ERROR_CANCELLED (if the
user canceled) or
ERROR_NOT_ENOUGH_MEM
ORY.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_STARTCOPY       

   

[New - Windows NT]

The SPFILENOTIFY_STARTCOPY notification is sent to the callback function when the queue starts a
file copy operation.

SPFILENOTIFY_STARTCOPY
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) Operation;

Parameters

Param1
Pointer to a FILEPATHS structure.

Param2
Always has the value FILEOP_COPY.

Return Values
The callback routine should return one of the following values.

Value Meaning
FILEOP_ABORT Abort the queue commit process.

The callback routine should call
SetLastError to indicate the
reason for termination. The
SetupCommitFileQueue function
returns FALSE and a subsequent
call to GetLastError returns the
error code set by the callback
routine during the call to
SetLastError.

FILEOP_DOIT Perform the file copy operation.
FILEOP_SKIP Skip the current copy operation.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_STARTDELETE       

   

[New - Windows NT]

The SPFILENOTIFY_STARTDELETE notification is sent to the callback function when the queue starts a
file delete operation.

SPFILENOTIFY_STARTDELETE
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) Operation;

Parameters

Param1
Pointer to a FILEPATHS structure.

Param2
Always has the value FILEOP_DELETE.

Return Values
The callback routine should return one of the following values.

Value Meaning
FILEOP_ABORT Abort the queue commit. The

callback routine should call
SetLastError to indicate the
reason for aborting.
SetupCommitFileQueue returns
FALSE and a subsequent call to
GetLastError returns the error
code set by the callback routine
during the call to SetLastError.

FILEOP_DOIT Perform the file copy operation.
FILEOP_SKIP Skip the current copy operation.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_STARTQUEUE       

   

[New - Windows NT]

The SPFILENOTIFY_STARTQUEUE notification is sent to the callback routine when the queue
commitment process starts.

SPFILENOTIFY_STARTQUEUE
 Param1 = (UINT) OwnerWindow;
 Param2 = (UINT) 0;

Parameters

Param1
Handle to the window that is to own the dialog boxes that the callback routine generates.

Param2
Unused.

Return Values
If an error occurs, the callback routine should call SetLastError, specifying the error, and then return 0.   
The SetupCommitFileQueue function will return FALSE and a subsequent call to GetLastError will
return the error code set by the callback routine.

If no error occurs, the callback routine should return a nonzero value.

See Also
SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_STARTRENAME       

   

[New - Windows NT]

The SPFILENOTIFY_STARTRENAME notification is sent to the callback function when the queue starts a
file rename operation.

SPFILENOTIFY_STARTRENAME
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) Operation;

Parameters

Param1
Pointer to a FILEPATHS structure.

Param2
Always has the value FILEOP_RENAME.

Return Values
The callback routine should return one of the following values.

Value Meaning
FILEOP_ABORT Abort the queue commit. The

callback routine should call
SetLastError to indicate the
reason for termination.
SetupCommitFileQueue returns
FALSE and a subsequent call to
GetLastError returns the error
code set by the callback routine
during the call to SetLastError.

FILEOP_DOIT Perform the file copy operation.
FILEOP_SKIP Skip the current copy operation.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_STARTSUBQUEUE       

   

[New - Windows NT]

The SPFILENOTIFY_STARTSUBQUEUE notification is sent to the callback function when the queue
starts to process the operations in the delete, rename, or copy subqueue.

SPFILENOTIFY_STARTSUBQUEUE
 Param1 = (UINT) SubQueue;
 Param2 = (UINT) NumOperations;

Parameters

Param1
Specifies which subqueue has been started. This parameter can be any one of the values
FILEOP_DELETE, FILEOP_RENAME, or FILEOP_COPY.

Param2
Specifies the number of file copy, rename, or delete operations in the subqueue.

Return Values
If an error occurs, the callback routine should call SetLastError, specifying the error, and then return 0.   
The SetupCommitFileQueue function will return FALSE and a subsequent call to GetLastError will
return the error code set by the callback routine.

If no error occurs, the callback routine should return a nonzero value.

See Also
SetupCommitFileQueue, SetupDefaultQueueCallback

SPFILENOTIFY_TARGETEXISTS       

   

[New - Windows NT]

The SPFILENOTIFY_TARGETEXISTS notification is sent to the callback routine if the file to be copied
was queued with the SP_COPY_NOOVERWRITE flag and that file already exists in the target directory. It
can be sent to the callback routine alone or combined, by using the OR operator, with the
SPFILENOTIFY_LANGMISMATCH and/or SPFILENOTIFY_TARGETNEWER notifications.

SPFILENOTIFY_TARGETEXISTS
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) 0;

Parameters

Param1
Pointer to a FILEPATHS structure that contains information about the paths for the source and target
files.

Param2
This parameter is not used unless this notification is combined, by using the OR operator, with the
SPFILENOTIFY_LANGMISMATCH notification.

Return Values
The callback routine should return one of the following values.

Value Meaning
TRUE Overwrite the file in the target directory.
FALSE Skip the current copy operation.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback, SetupInstallFile,
SetupInstallFileEx, SetupInstallFromInfSection

SPFILENOTIFY_TARGETNEWER       

   

[New - Windows NT]

The SPFILENOTIFY_TARGETNEWER notification is sent to the callback routine if the file to be copied
was queued with the SP_COPY_NEWER or SP_COPY_FORCE_NEWER flags specified and a newer
version of the file already exists in the target directory. It can be sent to the callback routine alone or
ORed together with SPFILENOTIFY_LANGMISMATCH and/or SPFILENOTIFY_TARGETEXISTS.

SPFILENOTIFY_TARGETNEWER
 Param1 = (UINT) FilePathInfo;
 Param2 = (UINT) 0;

Parameters

Param1
Pointer to a FILEPATHS structure that contains information about the paths for source and target
files.

Param2
This parameter is not used unless this notification is combined, by using the OR operator, with
SPFILENOTIFY_LANGMISMATCH.

Return Values
The callback routine should return one of the following values.

Value Meaning
TRUE Overwrite the file in the target directory.
FALSE Skip the current copy operation.

See Also
FILEPATHS, SetupCommitFileQueue, SetupDefaultQueueCallback, SetupInstallFile,
SetupInstallFileEx, SetupInstallFromInfSection

Errors
The following errors are specific to the Setup API.

Error Codes
The following error codes are specific to the Setup API.

INF Parsing Errors Description
ERROR_EXPECTED_SECTION_NAM
E

A section name was
expected, and not found.

ERROR_BAD_SECTION_NAME_LINEThe section name was not of
the correct format.
(For example, a name not
terminated by a right-hand
bracket (]).

ERROR_SECTION_NAME_TOO_LON
G

The section name exceeded
the maximum length of
MAX_SECT_NAME_LEN.

ERROR_GENERAL_SYNTAX The general syntax is
incorrect.

INF Runtime Errors Description
ERROR_WRONG_INF_STYLE The INF is not of the type

specified in the function call.
(This error will also be
returned if an Windows NT
3.x INF file is passed into
SetupOpenAppendInfFile).

ERROR_SECTION_NOT_FOUND The section was not found in
the INF file.

ERROR_LINE_NOT_FOUND The line was not found in the
INF section.

